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Abstract

This paper introduces, analyzes, and applies three variants of the enumeration
framework symmetric lexicographic subset reverse search for the enumeration of sub-
sets of a finite set up to symmetry. The framework is implemented in detail for three
applications: cocircuits, circuits, and triangulations of point configurations. There are
two new methods presented and analyzed to check the lexicographic minimality of a
subset in its orbit: the critical-element method and the modified switch-table method.
Moreover, new application-dependent methods to reduce the number of necessary
enumeration nodes are introduced: rank-pruning for cocircuits and lex-pruning for
triangulations. For circuits, a compact data structure, the column representation matrix,
is introduced that allows the detection of signed circuits only by admissible column
operations. With a C++-implementation of the ideas in the software package TOPCOM,
in all three applications known benchmarks can be computed faster by a large margin,
and new numbers, among others the number of cocircuits of the 9-cube, the number of
circuits of the 8-cube, and the number of all triangulations of the product of a 5- and a
3-simplex, can be computed for the first time. For triangulations, a new method to enu-
merate triangulations with special properties allows to avoid infeasible triangulations
directly in the enumeration process, which reduces the effort drastically compared to
the enumeration of all triangulations and eliminating the infeasible triangulations in
post-processing. For the first time, this method is used to enumerate of all triangulations
with prescribed symmetry for instances, where the enumeration of all triangulations
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would be out of reach today. This is used, e.g., for a computational proof that all triangu-
lations with order-five cyclic symmetry of the product of two 4-simplices are connected
to a regular triangulation in the flip-graph. Moreover, for the first time non-subregular
triangulations have been found in the 4-dilated 3-simplex and the 3-dilated 4-simplex.
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1 Introduction

This paper systematically studies how to enumerate subsets of a finite set up to symmetry
based on a specialization of the reverse-search paradigm to orbits of subsets. In order to
demonstrate the benefits of this approach, three applications are presented: for a point or
vector configuration, enumerate up to symmetry all its cocircuits, all its circuits, and all its
triangulations, respectively. In all three applications the scales of problem instances that
can be handled are extended significantly.

Fast enumeration in general is important also in optimization: in combination with
a dual-bound scheme, it gives rise to a branch-and-bound optimization algorithm. In
dynamic column-generation, the pricing problem is sometimes attacked by enumerative
algorithms (see, e.g., [18]). Whenever symmetries are present, an enumeration up to symme-
try is the appropriate procedure. This is particularly important for large symmetry groups in
branch-and-bound (like the n ! symmetries emerging by re-indexing n equivalent decision
variables), since the n ! branches containing the equivalent optimal solutions can never be
pruned.

The reverse-search paradigm is appealing because it generates an enumeration tree.
An enumeration based on organizing the objects to be enumerated in a tree has two main
advantages: first, it can be implemented in a memory efficient way by depth-first-search in
the enumeration tree; second, it can be parallelized easily in a lock-free fashion. For example,
enumeration based on the reverse-search paradigm can become faster after parallelization
than alternative algorithms that are faster without parallelization [3].

A general account for the complexity of a variety of enumeration algorithms can be
found in [22], where the objects to be enumerated are considered as the results of certain
abstract closure operations. Symmetries are not considered.

The top-level enumeration method in this paper can be seen as a specialization of reverse
search [2] to subsets up to symmetry. Reverse search has been specialized to the enumeration
of orbits in [13] and parallelized in [3]. The specialization of reverse-search to feasible subsets
of a finite set is probably folklore, but a specialization exploiting the lexicographic ordering
of subsets to enumerate subset orbits was first formalized (in a different language) in [24]
with applications for very large symmetry groups, where not all group elements can be held
in memory. Though examples show the potential of the resulting algorithm, no theoretical

4



analysis of the speed-up compared to naive approaches was provided. In this paper, variants
of the same basic idea are designed, analyzed, and exploited in three example applications.

The first application in this paper is concerned with the enumeration of signed cocircuits
of a point or vector configuration. Cocircuits in, e.g., hypercubes are in connection to the
various ways binary data can be weakly linearly separated and therefore related to topics in
data science. In [1] all hyperplanes spanned by vertices of the d -dimensional hypercube Cd

were classified and enumerated up to d = 8 (12 days of cpu time on a computer that was
fast according to the standards of that time). The authors estimated a cpu time of 35 years
for d = 9 for their method based on the classification of normal vectors. There seems to
be no documented algorithm or code enumerating the hyperplanes in a general point or
vector configuration. In this paper, all hyperplanes for, e.g., the 9-cube are enumerated up
to symmetry for the first time.

The second application in this paper is concerned with the enumeration of signed
circuits of a point or vector configuration. This is the dual problem to the first one (in the
oriented-matroid sense, see [4]). Circuits are in close connection with minimal infeasible
subsystems and sparse kernel elements, which are related to compressed sensing. There
is an incremental-polynomial-time algorithm for the enumeration of (unsigned) circuits
of a matroid in [17] based on the exchange axiom for circuits, which improves on older
algorithms like the one in [23] based on using bases for constructing circuits. However, it is
not clear how symmetries could be exploited in this algorithm. Moreover, the nature of the
exchange axiom shows that the worst-case time to add one more circuit is at least quadratic
in the number of already computed circuits, which seems prohibitive at least for the larger
examples in this paper. In this paper, all circuits for, e.g., the 8-cube are enumerated up to
symmetry for the first time.

The third application in this paper is concerned with the enumeration of triangula-
tions of a point or vector configuration. See [8] for background on triangulations and why
their enumeration is interesting. Recently, a parallel enumeration up to symmetry of all
subregular triangulations was suggested in [14]. A triangulation is subregular, if it can be
flipped to a regular-triangulation by upflips, i.e., flips that lexicographically increase the
GKZ-vector. Hence, whether or not a triangulation is subregular usually depends on the
order of points in the input. The presented computational results were achieved based on
the freely available package mptopcom. It enumerates all subregular triangulations up to
symmetry. It significantly extends the scales of instances that can be handled compared
to the earlier TOPCOM [25], which itself is a large step forward from de Loera’s pioneering
maple-code PUNTOS from his thesis [6]. The code mptopcom has later been specialized for
cyclic polytopes to generate some new numbers [15] extending the computational results
in [25, 27]. This was possible although for mptopcom symmetries must conserve simplex
volumes, so that the standard cyclic polytopes do not have valid symmetries in that stronger
sense.

All mentioned enumeration algorithms for triangulations are flip-based, i.e., they explore
the flip graph of triangulations, where two triangulations share an edge if they are connected
by a bistellar flip. This is a generalization of swapping diagonals in a convex quadrilateral
in dimension two (see [8] for a definition in all dimensions). Since Santos’s triangulation
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without flips in [29] it is known that flip-based algorithms may not find all triangulations
in general. TOPCOM [25] was the first published software to enumerate all triangulations
by building them simplex-by-simplex, which will be called an extension-based algorithm.
However, the instances that could be handled were only toy-size examples. In [13] the
extension-based enumeration of triangulations was reduced to the enumeration of maximal
cliques in the proper-intersection graph of all simplices. However, no computational results
were given. And the results in this paper show evidence for the fact that a pure max-clique
enumeration cannot be efficient: there are too many maximal cliques that correspond to
a maximal incomplete triangulation. This is a set of simplices with proper intersections
that is not a triangulation and that cannot be extended (for exact definitions see Section 9).
The enumeration of all triangulations corresponds to an enumeration of all vertices of the
universal polytope [7]; since no complete outer description of this polytope is available, the
vertex enumeration problem for it is not straight-forward. In this paper, all triangulations
of, e.g., the regular dodecahedron or the product of a 5- and a 3-simplex are enumerated up
to symmetry for the first time.

Besides the fact that extension-based algorithms reach all triangulations, there is one
other motivation for them: If the search shall be restricted to triangulations using only
special simplices (like unimodular simplices or simplices not containing any points of the
configuration other than their vertices), then the flip-based algorithms have to explore the
whole flip-graph anyway and filter ex-post by the wanted triangulations (since the subgraph
of all wanted triangulations may be disconnected even for easy examples), whereas an
extension-based algorithm can exclude the unwanted simplices right from the beginning.
Moreover, a new method is presented that can exclude pairs of simplices from consideration
that cannot co-exist in a triangulation with prescribed symmetry. In this paper, e.g., all
central and centrally symmetric triangulations of the full root polytope in ambient 6-space
are enumerated for the first time, while the enumeration of all its triangulations seems
currently out of reach by far.

The overall contributions of this paper are both incremental and original. The top-level
method used in this paper consists of a generic enumeration framework for the enumeration
of all orbits of a downset, i.e., a set of subsets closed under taking subsets. This framework
is called Symmetric Lexicographic Subset Reverse Search (SymLexSubsetRS) in this paper.
Three variants of SymLexSubsetRS are studied: enumerate orbits of maximal elements in a
downset, enumerate orbits of minimal elements not in a downset, and enumerate orbits of
feasible antichains in a downset. The generic algorithm SymLexSubsetRS and the variant for
feasible subsets in this paper – though developed independently – are essentially identical
to the proposed algorithm in [24] for the enumeration of set orbits. The methods in this
paper can be seen as variants, refinements, and new specializations of it and its subroutines.
Without these incremental and original achievements, the new results would not have been
possible. All applications have been implemented in the TOPCOM package, which is freely
available under the Gnu Public Licence on the author’s webpage.

The genuinely original contributions of this paper are twofold: for the general framework,
two alternative checks of lexicographic minimality of a subset in its orbit (called the lex-
min check) are proposed; for the particular applications, new methods are presented for
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recognizing that a subset cannot be extended to a feasible subset by adding larger elements
(called the lex-ext check).

Concerning the lex-min check, the first new alternative is the critical-element method. It
is based on new theory presented in Section 3. This alternative is mainly interesting for cases
in which the symmetry group is of moderate order, i.e., is given as a list of all permutations in
it, and of a degree in the same order of magnitude, i.e., there are at least as many elements as
there are permutations. The enumeration of all triangulations usually fits into this scheme.

The second alternative is the modified switch-table method. It combines the ideas in
[24]with the switch-table method in [14]. This alternative works best for symmetry groups
whose order is large compared to the degree. The enumeration of circuits and cocircuits is
an appropriate use-case.

In order to assess the efficiency of each method a-priori, a hyper-amortized analysis
on uniform inputs is presented. Roughly speaking: for small order and large degree, the
critical-element method is faster. For large order and small degree, the modified switch-
table method is faster. This analysis sheds light on why, in computational experiments,
for triangulations of hypercubes the critical-element method is faster, whereas for (co-
)circuits of hypercubes the modified switch-table method wins. This constitutes the first
ever theoretical analysis of algorithms based on switch-tables.

Concerning the lex-ext checks for the applications, the new rank-based rank-pruning
accelerates the enumeration of cocircuits up to symmetry. This allowed the first ever enu-
meration of all hyperplanes in the 9-cube C9 up to symmetry in less than 14 hours. It is
unclear how fast the code from [1] would run on today’s computers. However, TOPCOM’s
enumeration algorithm goes beyond the method in [1] anyway, since it works for general
configurations and does not exploit any theory about cubes.

For the enumeration of circuits no effective lex-ext check was found so far. Still, the
algorithm could compute some new numbers, among them the numbers of circuits up
to symmetry of the hypercubes C6, C7, and C8. Note that in order to enumerate circuits
one can also enumerate cocircuits in the Gale-transform (see [8] for more background on
this). Whether or not this is faster or slower usually depends on the rank and the corank
of the configuration. Having specialized algorithms for both means that one can pick the
respective faster strategy.

For the enumeration of triangulations up to symmetry, the new lex-ext check lex-pruning
is the single most important progress. It is based on the property of any triangulation that
each interior facet of a simplex is covered by another simplex [8, Cor. 4.1.32]. From this one
can derive the rather tight lex-ext check full-pruning. A weaker variant is strong pruning,
which can be implemented more easily. The new lex-ext check lex-pruning heavily exploits
the lexicographic ordering of all simplices and their interior facets in all data structures
involved. While strong-pruning has to perform many subset operations, lex-pruning only
compares two certain integers. Still it is almost as effective as strong-pruning. The numbers
of all triangulations of, e.g., the dodecahedron and the product of a 5- and a 3-simplex could
be computed this way for the first time in a couple of days.

For the enumeration of triangulations up to symmetry with a prescribed automorphism
group, the new method based on group-feasible simplices with group-proper intersection
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for the first time allows to restrict the search space for triangulations directly to the sym-
metric triangulations, thereby avoiding the need to implicitly enumerate all triangulations
during the process. This contribution opens the door for the application of a variant of the
Kramer-Mesner method [19] from design theory (restrict the search to symmetric designs)
to otherwise intractable search problems in the set of all triangulations. This way, all central
and centrally symmetric triangulations of the full root polytope in ambient 6-space have
been found in about an hour.

Symmetric lexicographic subset reverse search can be used to count, enumerate, or
to list objects up to symmetry (details below). The proposed specializations to the three
applications are in most cases provably not output-polynomial. This is shown by concrete
pathological examples. Still, for the computational examples in these three applications no
implementations have been published so far that are nearly as fast as the implementations
in TOPCOM (see [25] for the foundations of the version prior to this work) of the methods in
this paper.

The paper is organized as follows. Section 2 reviews some important notions and al-
gorithms. Moreover, the notational conventions are fixed and a short general problem
statement is given. In Section 3 the theoretical considerations for the new lex-min checks
are proven. Section 4 is devoted to an algorithmic analysis of the variants of the top-level
algorithm and the lex-min checks valid for arbitrary applications. The discussion of three
special applications starts in Section 5 with some common preliminaries on point and vector
configurations. Section 6 describes the computational environment used for the numerical
experiments. Then, Sections 7 through 9 present the new results that are relevant for each
application individually. Finally, Section 10 contains a summary and some conclusions.

2 Preliminaries

In this section, some basic notions and notation are introduced. Moreover, some known
algorithms are formulated in terms of the reverse-search framework in order to make it easier
to compare the known with the novel.

Let [n ] denote the set of integers {1,2, . . . , n}with the convention [0] = ;. For k ∈Z the
set of all k -element subsets of [n ] is written as

�[n ]
k

�

. The power set of [n ] is denoted by 2[n ].

The elements of 2[n ] and, thus, also of
�[n ]

k

�

are totally ordered by the subset-lexicographic
order given by ;<lex S for all S 6= ; and S <lex R if and only if either minS <min R or minS =
min R and S \ {minS}<lex R \ {min R }.

For subsets S and S ′ of [n ] the lex-inclusion partial order is defined by S ⊆lex S ′ if S ⊆ S ′

and s < s ′ for all s ∈ S and s ′ ∈ S ′ \S . In that case S is a lex-subset of S ′ or S ′ lex-contains S .
Note that the Hasse-diagram of this partial order is a tree rooted at the empty set.

For an undirected graph G = (V , E ) and a node v ∈V , the neighborhood N (v ) of v in G
is the set of nodes connected to v by an edge in E . Its cardinality |N (v )| is the degree d (v ) of
v ∈V , and the maximum of all degrees over all nodes is denoted by d max(G ) (or d max if G is
clear from the context).

The symmetric group on n elements is considered as the set of bijections from [n ] to itself.
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It is denoted bySn , and subgroups of it are usually denoted byG. For a subgroupGofSn and
a finite setΩ, a mapφ : G×Ω→Ω is a (left) group action ofGonΩ ifφ(π ·σ,ω) =φ

�

π,φ(σ,ω)
�

for all π,σ ∈G and allω ∈ Ω. Most of the times, certain clearly induced group actions φ
are denoted by π(ω) :=φ(π,ω) for π ∈G andω ∈Ω, leading to (π ·σ)(ω) =π

�

σ(ω)
�

. Given
such a group action, the stabilizer subgroup ofω ∈Ω in G is Gω := {π ∈G :π(ω) =ω}. For
Ω′ ⊆ Ω, the point-wise stabilizer of Ω′ is GΩ′ := {π ∈G : π(ω) =ω for allω ∈Ω′}. This must
be distinguished from the set-wise stabilizer of Ω′, denoted by G{Ω′}, which is defined as
G{Ω′} := {π ∈G :π(ω) ∈Ω′ for allω ∈Ω′}. The G-orbit ofω is G(ω) := {π(ω) :π ∈G}. The set
of all G-orbits is S/G := {G(ω) :ω ∈Ω}.

For a permutation π ∈ Sn and a graph G with node set V = [n ] and edge set E let
π
�

{v, w }
�

=
�

π(v ),π(w )
	

denote the induced action of π on edges, for all edges {v, w } ∈ E .

The definition π(E ) := {π(e ) : e ∈ E } induces a new graph π(G ) =
�

π([n ]) = [n ],π(E )
�

on the
same node set. This defines an action of Sn on the set of all graphs on the node set [n ]. The
automorphism group Aut(G ) of a graph G = ([n ], E ) is the set of all π ∈Sn with π(G ) =G .
The elements of Aut(G ) are the symmetries of G .

Similarly, forπ ∈Sn the induced action ofπon any k -element subset S = {s1, . . . , sk} ∈
�[n ]

k

�

is denoted by π(S ) =
�

π(s1), . . . ,π(sk )
	

∈
�[n ]

k

�

. For a subsetS = {S1, . . . ,Sm} of 2[n ] the induced

action of π onS is denoted by π(S ) =
�

π(S1), . . . ,π(Sm )
	

. The automorphism group Aut(S )
is the set of all π ∈Sn with π(S ) =S .

The analogous concept can be used for sets of subsets of 2[n ]. For example, in one
application there is the induced action of a permutation π ∈Sn on a triangulation T of a
point configuration with n labeled points given by the label sets of its maximal simplices.
That action is denoted by π(T ) as well.

Here and in the following, the size of the actual output, generated in the function output
in all the algorithms below, is significant for the assessment of whether or not an algorithm
can be called output-polynomial. If the output is just printing a single symbol for each
found object, then the output is equivalent to a unary encoding of the number of found
objects, and an output-polynomial algorithm can take time polynomial in the input size
and the number of found objects. This problem setup is called the enumeration problem in
this paper; if the output is skipped altogether, then the remaining output is only the number
of objects to be counted, and an output-polynomial algorithm must be polynomial in the
input size and the logarithm of the number of found objects. This problem setup is called
the counting problem in this paper. Finally, if for each enumerated object the object has to
be listed, then the ouput is a list of encodings of all enumerated objects. This problem setup
is called the listing problem in this paper. If the output size of a single object is exponential
in the input size, then an algorithm that is polynomial in the input and output sizes for
the listing problem can be exponential in the input and output sizes for the enumeration
problem. For example, the output of a single triangulation can be exponential in the input
size and even in the number of triangulations (see Section 9.2 Theorem 13 (iii)). A similar
distinction will be necessary concerning the encoding of the input. If the symmetries are
given as an explicit, complete set of permutations in tupel notation, then a polynomial-time
algorithm can take time polynomial in the order and the degree of the symmetry group. If
the symmetries are given in terms of generators in cycle-notation, then a polynomial-time
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algorithm needs to be polynomial in the actual input-size of the generators, which can be
substantially more restrictive.

In the remainder of this section, the general-purpose algorithm Symmetric Lexicographic
Subset Reverse Search (SymLexSubsetRS) is developed in the language of the reverse-search
paradigm from [2]. Starting at the basic Reverse Search, the extensions to orbits and the
specializations to subsets are introduced one-by-one. The algorithms in this section are
not new, but a summary of all variants in a unified notational environment is helpful to
understand the extensions.

As a simplification, a recursive form is used for presentation, which usually increases
the memory consumption of the algorithms. However, the more memory-efficient original
Reverse-Search framework (with non-recursive backtracking by pivoting) can be applied
to all presented algorithms. In this paper, recursive implementations have been used
throughout, since they were faster in the presented applications.

First, the original Reverse Search is formulated [2]. Reverse Search (RS) is an algorithm
to enumerate the nodes of a graph G = (V , E )with known maximal degree d max. The graph
is implicitly given by an adjacent-nodes function Adj : V × [d max]→V ∪{NULL} that returns
for each node v ∈ V and each integer i ∈ [d max] the i th neighbor of v if i ≤ d (v ) and
NULL if d (v )< i ≤ d max. The enumeration is structured by a non-degenerate cost function
φ : V → R and a pivot-function p : V → N (V ) ∪ {NULL}, which is a rule to specify a φ-
improving neighbor in G in case there is one. A recursive representation of Reverse Search
in pseudo-code is shown in Algorithm 1.

The run-time complexity of RS is O (d maxτ(Adj)|V |+τ(p )|E |), where τ( f ) denotes the
maximal time to compute a function value of a function f . Since 2|E | ≤ d max|V |, this
run-time complexity is in O (d max(τ(Adj) +τ(p ))|V |). This is particularly interesting when
τ(Adj) and τ(p ) do not depend on |V |. In that case, RS is linear in the output size for the
enumeration problem [2].

If one has a group G acting on G one is usually only interested in |V | up to symmetry.
In other words, the number of G-orbits |V /G| of V shall be determined. How the reverse
search principle can be adapted to this setting, was first presented in [13]. The idea is to
extend the adjacent-nodes function Adj to G-orbits in the obvious way and to modify the
pivot-function to consist of two steps: In the first step, theφ-minimal element, the canonical
element, in the current orbit is taken; in the second step, theφ-reducing pivot-function on
G is followed. Thus, another orbit is reached in case the minimal element of the current
orbit was no global minimum already. The downside is that all canonical elements in the
neighborhood of a node must be stored intermediately to avoid duplicate counting of orbits.
This undermines the memory efficiency of the reverse search principle. Algorithm 2 shows
a detailed pseudo-code representation.

A specialized form of Reverse Search arises when a set of “feasible” subsets of a finite
set shall be enumerated by adding elements, checking feasibility one-by-one, and back-
tracking. This automatically will touch many subsets of feasible sets. Thus, one can restrict
to the enumerations of downsets, i.e., sets of subsets, where each subset of a feasible set is
feasible itself. Algorithm 3 shows the specialization of Reverse Search, which is a folklore
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Algorithm: RS(Adj,φ, p , v )

Input: a connected graph G = (V , E )with maximal degree d max, implicitly given by an
adjacent-nodes function Adj : V × [d max]→V ∪{NULL}, a cost functionφ : V →R
withφ(v ) 6=φ(w ) for all v 6=w in V andφ(v ∗) =minv∈V φ(v ), a pivot function
p : V →N (V )∪{NULL}withφ

�

p (v )
�

<φ(v ) for all v ∈V \ {v ∗} and p (v ∗) =NULL, a
seed node v in V

Output: the number of nodes in V≥v := {w ∈V :φ(w )≥φ(v )}
/* build a depth-first-search tree with root node v : */
output v and c ← 1 ; /* count v */
for j = 1, . . . , d max do /* iterate over neighbors of v */

w ←Adj(v, j ) ; /* get j th neighbor */
if w =NULL then /* if past the last neighbor */

break ; /* exit the loop */

if v = p (w ) then /* if w pivots to v */
c ← c +RS(Adj,φ, p , w ) ; /* recurse */

return c;

Algorithm 1: The generic reverse search algorithm (cf. [2])

observation.1 A notable further specialization can be seen in Algorithm 4: by using the
natural order for extending subsets by a new element one can guarantee that the subsets
are found in lexicographic order.

If downsets shall be enumerated up to symmetry, the lexicographic order on subsets
simplifies affairs substantially. If the canonical representative is defined to be the lex-
min element in each orbit, then there is no need for computing and comparing canonical
representatives for all found elements anymore. The only thing needed is to check whether
or not the found element can be lex-decreased at all by the action of an element in G. Since
Lemma 2 guarantees that a canonical subset can never lex-contain a non-canonical subset,
the enumeration can simply ignore any non-canonical element and backtrack. Therefore,
in the following, a subset S is called canonical if it is lex-min in its orbit. The resulting
algorithm (Algorithm 5) is essentially identical to the algorithm proposed in [24].

With this, the processing of a node in the enumeration of subsets up to symmetry is
reduced to checking whether a subset is lex-min in its orbit and to checking, whether a
subset is feasible. Thus, the collection of canonicals in the neighborhood of a subset need
not be stored.

In [24], a generator-based recursive method is proposed to check whether a subset is
lex-min in its orbit. The applications in that paper indicate that the methods aim at groups of
very large order. For groups of medium-sized order (like in the millions) the, also generator-
based, switch-table method (originally for vectors, which is more general) is presented in [14].

1Strictly speaking, for the algorithms in this paper it is enough forD to be a left-downset, i.e., closed under
taking lex-subsets. General downsets are taken in order to keep the problem statements independent of the
algorithms and additional structures used for their solutions.
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Algorithm: SymRS(Adj,φ, p , G, v̌ )

Input: a connected graph G = (V , E )with maximal degree d max, implicitly given by an
adjacent-nodes function Adj : V × [d max]→V ∪{NULL}, a cost functionφ : V →R
withφ(v ) 6=φ(w ) for all v 6=w in V andφ(v ∗) =minv∈V φ(v ) , a pivot-function
p : V →N (V )∪{NULL}withφ

�

p (v )
�

<φ(v ) for all v ∈V \ {v ∗} and p (v ∗) =NULL, a
subgroup G of Aut(G ) and a canonical-representative function Canonical(v )=: v̌
withφ(v̌ )<φ(w ) for all w ∈G(v ), a seed node v̌ in V that is the canonical
representative of G(v̌ )

Output: the number of canonical w̌ withφ(w̌ )≥φ(v̌ )
/* build a depth-first-search tree with root node v̌ : */
output v̌ and c ← 1 ; /* count v̌ */
W̌ ←{v̌ } ; /* collects already processed canonicals */
for j = 1, . . . , d max do /* iterate over neighbors of v̌ */

w ←Adj(v̌ , j ) ; /* get j th neighbor */
if w =NULL then /* if past the last neighbor */

break ; /* exit the loop */

w̌ ← Canonical(w ) ; /* compute canonical representative */
if w̌ /∈ W̌ then /* if w̌ is new */

u← p (w̌ ) ; /* compute pivot */
ǔ← Canonical(u) ; /* compute canonical representative */
if ǔ = v̌ then /* if G(w ) pivots to G(v̌ ) */

W̌ ← W̌ ∪{w̌ } ; /* add w̌ to set of processed canonicals */
c ← c +RS(Adj,φ, p , G, w̌ ) ; /* recurse */

return c;

Algorithm 2: The application of reverse-search to the graph of all orbits in V /G

Algorithm: SubsetRS(n,D, S)

Input: n ∈N, a downsetD of 2[n ], a seed set S ∈D
Output: the number of elements S ′ inD with S ⊆lex S ′

/* build a depth-first-search tree with root node S: */
output S and c ← 1 ; /* count S */
for j ∈ [n ] \S with j >max(S ) do /* for extensions with new max */

S ′← S ∪{ j } ; /* build new set */
if IsInDownset(S ′,D) then /* if new set belongs to D */

c ← c +LexSubsetRS(n,D, S ′) ; /* recurse */

return c;

Algorithm 3: The standard application of reverse-search to the Hasse-diagram of
a downset D of subsets of an n-element set that exploits the straight-forward set-
valued inverse of the pivot function
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Algorithm: LexSubsetRS(n,D, S)

Input: n ∈N, a downsetD of 2[n ], a seed set S ∈D
Output: the number of elements S ′ inD with S ⊆lex S ′

/* build a depth-first-search tree with root node S: */
output S and c ← 1 ; /* count S */
for j =max(S ) +1, . . . , n do /* ordered traversal of new elements */

S ′← S ∪{ j } ; /* build new set */
if IsInDownset(S ′,D) then /* if new set belongs to D */

c ← c +LexSubsetRS(n,D, S ′) ; /* recurse */

return c;

Algorithm 4: A specialized implementation of SubsetRS(n,D, S) traversing the
pivot-inverse according to the lexicographic order of subsets of [n ]

Algorithm: SymLexSubsetRS(n,D, G, S)

Input: n ∈N, a downsetD of 2[n ], a subgroup G of the automorphism group ofD, a seed set
S ∈D with S = lex-minG(S )

Output: the number of canonical S ′ inD with S ⊆lex S ′

/* build a depth-first-search tree with root node S: */
output S and c ← 1 ; /* count S */
for i =max(S ) +1, . . . , n do /* ordered traversal of new maximal elements */

S ′← S ∪{i } ; /* add a new element on the right */
answer← IsLexMin(S ′, G) ; /* lex-min check */
if answer= FALSE then /* if new set is not lex-min in its orbit */

continue ; /* next loop element */

answer← IsInDownset(S ′,D) ; /* membership check */
if answer= FALSE then /* if new set is not in D */

continue ; /* next loop element */

c ← c +SymLexSubsetRS(n ,D,G,S ′) ; /* recurse */

return c;

Algorithm 5: A specialized implementation of the combination of LexSubsetRS and
SymRS for orbits of subsets in a downsetD of 2[n ] (cf. [24])
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A new combination of the methods in [24] and [14] (for subsets) turned out to be the fastest
method for the enumeration of cocircuits and circuits in the test cases of this paper. For even
smaller group orders (like in the thousands) the overhead of all the generator-based methods
may not pay off. Hence, a new taylor-made element-based method is developed in Section 3
exactly for those cases. This turned out to be the fastest method for the enumeration of
triangulations.

Switch tables [14] are non-standard and are therefore introduced in the following. Given
a subgroup G of Sn , a switch table is a function st(·, ·) : [n ]× [n ]→G with either st(i , j ) =π
so that π( j ) = i for some j > i and π(k ) = k for all k < i , if such a π ∈G exists, or st(i , j ) = id
otherwise. A switch table need not be unique. The entries st(i , j ) are called switches. An
entry of a switch table is trivial if it is the identity. A row of a switch table is effective if it
contains at least one non-trivial switch. The set effRowSet of all row indices i so that st(i , ·)
is effective is called the effective row set of st(·, ·). The (non-empty) set of column indices of
non-trivial switches in an effective row i ∈ effRowSet is the effective column set of i , denoted
by effColSet(i ). For the trivial group, there are no effective rows, for which we adopt the
convention that max effRowSet=−∞.

One key property of a switch table is that each element of G is an essentially unique (up
to the insertion of trivial factors) product of switches consisting of at most one non-trivial
switch from each row. Not all switches can contribute to a lex-decreasing switch-product, so
that not all products need to be considered. A straight-forward version of the algorithm for
subsets is presented in Algorithm 6. Details for general vectors instead of subsets – which
can be seen as special, namely characteristic, vectors – can be found in [14]. The algorithm
uses global auxiliary data, which is given by a switch table ST= st(·, ·) for G.

The membership-test in IsInDownset can be difficult. In cases, where the downset to be
enumerated up to symmetry has only been implicitly defined as a downset by a set of really
interesting subsets together with all its subsets, IsInDownset in fact needs to answer the
question whether or not a subset is a subset of a really interesting set. This problem arises in
all of the applications in this paper and has to be solved for each application seperately. In
section 4, variants of SymLexSubsetRS will be designed where this membership test is relaxed
in order to make faster progress at the cost of accepting deadends in the enumeration.

Problem Statement In this paper, the following questions concerning the algorithm
SymLexSubsetRS and some variants are studied in detail:

• How can the subroutine IsLexMin of SymLexSubsetRS be implemented efficiently in
general?

• How can the subroutines of SymLexSubsetRS and its variants be implemented effi-
ciently for each of the applications. More specifically:

– How can one effectively prune subsets of vectors that are not lex-contained in a
circuit or cocircuit, respectively?

– How can one effectively prune subsets of simplices that are not lex-contained in
a triangulation of the point configuration?
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Algorithm: IsLexMin_viaSwitches(i ,S ,S ′,G,ST)

Input: an integer i ∈ [1, n ], a subset S (the original subset), a subset S ′ (the subset mapped
by a partial switch product), a subgroup G of Sn , and a switch table ST of G

Output: TRUE if S = lex-minG[i−1](S ) and FALSE otherwise
/* check for empty set: */
if S = ; then

return TRUE;

/* beyond the effective row set? */
if i >max effRowSet(ST) then

return (S ′ 6<lex S );

/* recursively check a switch product with leading identity: */
if IsLexMin_viaSwitches(i +1,S ,S ′,G,ST)= FALSE then

return FALSE;

/* collect "good" switches lex-decreasing S ′: */
GS←{ j ∈ effColSet(i ) | i /∈ S ′, j ∈ S ′};
if GS= ; then

/* collect "good" switches not preventing future lex-decrease: */
GS←

�

j ∈ effColSet(i )
�

� |S ′ ∩{i , j }| ∈ {0, 2}
	

;

for j ∈GS do
S ′′← ST[i ][ j ](S ′) ; /* map subset */
if S ′′<lex S then

return FALSE ; /* decreasing switch product found */

/* recurse with mapped subset: */
if IsLexMin_viaSwitches(i +1,S ,S ′′,G,ST)= FALSE then

return FALSE;

return TRUE ; /* no decreasing switch product found */

Algorithm 6: The switch-table method from [14] specialized to subsets
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The term efficiently here does not mean polynomial-time. It rather indicates that compared
to naive approaches the number of steps is reduced as much as possible. The resulting algo-
rithms are, in general, not (counting/enumerating/listing for cocircuits and circuits as well
as counting/enumerating for triangulations) or not known to be (listing for triangulations)
output-polynomial.

3 On Lexicographically Minimal Elements in Subset-Orbits

This section provides mathematical structures that help to decide whether or not a subset is
lexicographically minimal in its orbit. For some of the upcoming arguments the following
characterization of the lexicographic order on k -element subsets of [n ] is used.

Lemma 1 (Lexicographic order on subsets). Let n ∈N. Moreover, let S and R be k -element
subsets of [n ]. Then S is lexicographically smaller than R if the minimal element of their
symmetric difference is in S. In formulae:

S <lex R ⇐⇒ min(S4R ) ∈ S , (1)

where min;=∞.

The following lemma states that if subsets are built element-by-element with backtrack-
ing and only the lexicographically minimal ones in their orbits are followed, then one will
reach all subsets that are lexicographically minimal in their orbits. This result was already
presented in [24]. Here, some more details for the proof are provided.

Lemma 2 (cf. [24]). Let S be a non-empty subset of [n ] and S− := S \ {maxS}. Then, for all
subgroups G of Sn we have:

S = lex-minG(S )⇒ S− = lex-minG(S−) (2)

Proof. Let S be lex-min in its G-orbit. Assume, for the sake of contradiction, that S− is not
lex-min in its G-orbit. Then, there is a set R which is lex-smaller than S− and a permutation
π ∈G withπ(S−) =R . In particular, S− and R are non-empty and non-identical. That means,
min(S−4R ) =: r ∈ R \S−. Moreover, π(maxS ) /∈ R , by the bijectivity of any permutation.
Consider R+ :=R ∪{π(maxS )}.

Since maxS >min(S− \R )>min(R \S−) =min(S−4R ) = r , we know that min(S \R )> r .
Moreover, R ⊂ R+ implies min(S \R+) ≥min(S \R ) > r . Since r ∈ R \S− and r <maxS , it
follows that r ∈R \S ⊆R+\S . Thus, min(R+\S )≤ r <min(S \R+), and, hence, min(S4R+) ∈
R+. Thus, by definition, R+ is lex-smaller than S with π(S ) =R+: contradiction.

Next, two methods for the lex-min check are presented: one for “small” symmetry groups
(order small compared to degree) based on the new concept of critical-element tables and
one for “large” symmetry groups (order large compared to degree) based on a modified use
of switch tables.
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First, the method for small groups is presented. It is based on the new structure of
critical-element tables. The third application in this paper concerns most often smaller
symmetry groups with relatively high degree that can easily be enumerated first. How can
one reduce the number of evaluations of actions on subsets in that check? Remember that
the orbits’ lexicographically-minimal subsets are built element-by-element. That is, for
the check of whether or not a given m-subset S is lexicographically minimal in its orbit,
one can exploit that its predecessor-subset S− with m −1 elements is already known to be
lexicographically minimal in its orbit. The new question is: has the addition of the new
maximal element led to the existence of a permutation that lexicographically decreases
(lex-decreases, for short) the new subset S in its orbit?

The new idea in this paper is to keep the information about why the predecessor subset
S− is lexicographically minimal in its orbit. The reason is that for each permutation π ∈G
one has

min
�

S−4π(S−)
�

/∈π(S−). (3)

These minimal elements of the symmetric differences of subsets and their images are critical
for the question at hand, which motivates the following definition:

Definition 1. Let n ∈N and G be a subgroup of Sn . For a given subset S the critical-element
table with respect to S is defined as follows:

critelemS :

�

G → [n ]∪{∞},
π 7→ min

�

S4π(S )
�

,
(4)

where min; :=∞. The function value critelemS (π) is called the critical element of πwith
respect to S .

From the critical-element table, some important of properties of the action of a permu-
tation π on the given subset S can be derived easily:

Lemma 3. Let n ∈N and G be a subgroup of Sn . Moreover, let S be a non-empty subset of [n ].
Then:

(i) The stabilizer of S in G is the set of permutations with critical element∞.

(ii) S is lexicographically minimal in its G-orbit if and only if critelemS (π) /∈ π(S ) for all
π ∈G.

(iii) Let S− := S \ {maxS}. Moreover, assume that S− is lexicographically minimal in its
G-orbit. Then a permutation π ∈G lex-decreases S if and only if one of the following
cases occurs:

I. critelemS−(π) =∞ and π(maxS )<maxS

II. critelemS−(π) ∈ S− and π(maxS )< critelemS−(π) or

III. critelemS−(π) ∈ S−, π(maxS ) = critelemS−(π) and critelemS (π) ∈π(S )
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Call the application of this the critical-element method for checking lexicographic mini-
mality of a subset in its orbit.

The crucial gain of this lemma is the following: given the critical-element table with
respect to S−, one can check lexicographic minimality of S in its orbit without actually
computing π(S ), with the only exception when π maps the new element of S exactly to
the critical element of S−. And this exception roughly happens for a 1

n -fraction of the
permutations, on average.

There are now two ways to implement the critical-element method.

1. iterate over all permutations and apply Lemma 3 to each of them (the iteration-based
critical-element method; see Algorithm 11 in Section 4 for a possible implementation);

2. first, from certain fixed, preprocessed subsets of permutations, compute the subsets
of permutations that

(a) certainly lexicographically decrease the given subset, and if empty,

(b) possibly lexicographically decrease the given subset.

If the subset of certainly lexicographically decreasing permutations is non-empty,
the subset is not lexicographically minimal in its orbit; if it is empty, iterate over the
possibly lexicographically decreasing permutations and apply Lemma 3 to only those
(the set-based critical-element method; see Algorithm 12 in Section 4 for a possible
implementation).

In the sequel, some details for the set-based method are explained.2 The following
structures of the possibly lexicographically decreasing permutations for a specific subset.
The first three structures can be preprocessed prior to the enumeration. The fourth structure
has to be updated for each enumeration node.

Definition 2. For n ∈N and a subgroupG ofSn , the hit-element classification ofG is defined
as

hitclass:

�

[n ]× [n ] → 2G,
(i , j ) 7→ {π ∈G :π(i ) = j }. (5)

The increasing-element classification of G is defined as

incclass:

�

[n ] → 2G,
i 7→ {π ∈G :π(i )> i }=

⋃n
k=i+1 hitclass(i , k ). (6)

2The approach is motivated by the fact that with a set structure based on dynamic bitstrings it is possible
to compute unions, intersections, differences, and symmetric differences of sets fast in practice. Nota bene:
From a complexity standpoint, bitstrings only gain something if their length is uniformly bounded. However,
in practice the reduction of the runtime by a constant factor by using dynamic bitstrings for set operations is
not irrelevant. Moreover, operations on dynamic bitstrings residing consecutively in memory are more cache
coherent than data structures that are scattered in main memory.
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The decreasing-element classification of G is defined as

decclass:

�

[n ]× [n ] → 2G,
(i , j ) 7→ {π ∈G :π(i )< j }=

⋃ j−1
k=1 hitclass(i , k ).

(7)

Moreover, for a subset S of [n ], the critical-element classification of G with respect to S is
defined as

critclassS :

�

[n ]∪{∞} → 2G,
i 7→ {π ∈G : critelemS (π) = i }. (8)

The next lemma characterizes lexicographical minimality in an orbit by intersections of
certain decreasing-element and critical-element classifications.

Lemma 4. Let n ∈N andG a subgroup ofSn . Moreover, let S be a non-empty subset of [n ], and
let S− = S \{maxS} be lexicographically minimal in itsG-orbit. Then S is not lexicographically
minimal in its G-orbit if and only if at least one of the following cases occurs:

I. The set decclass(maxS , maxS )∩ critclassS−(∞) is non-empty.

II. There is an element i ∈ S− such that the set decclass(maxS , i )∩ critclassS−(i ) is non-
empty.

III. There is an i ∈ S− and a permutation π in the set hitclass(maxS , i )∩ critclassS−(i ) such
that critelemS (π) ∈π(S ).

The set-based method has the advantage that the checks that potentially lead to an
immediate answer can be done prior to the complicated cases, whereas in the iteration
method it depends on the order of the permutations when the complicated cases have to be
handled. And whether or not an order of the permutations is advantageous heavily depends
on the subset at hand. The disadvantage of the set-based method is that for large n especially
the decreasing-element classification can grow large. Intermediate preprocessing structures
are possible trading speed for size. Corresponding details, however, are not discussed any
further in this work, since this is rather a topic of software-engineering.

For the applications presented in this paper the following observations can be made:
For enumerating triangulations (one prominent example∆6×∆2 has |G|= 30,240 and n =
35,721), the iteration method is mostly faster, whereas for the large cases in the enumeration
of circuits and cocircuits (our largest example, the cocircuits of the 9-cube C9, has |G| =
185,794,560 and n = 512) the set-based method is significantly quicker.

However, for the latter application with a large group order compared to the degree the
second new method based on switch tables is even faster than the set-based critical-element
method. This method is explained in the following. It works by combining switch tables
with the recursive algorithm in [24]. The recursive algorithm in [24] answers a slightly more
general question: for two given subsets Simg and Sorg with the same number of elements,
does there exist a permutation π ∈G with π(Simg)<lex Sorg? The answer is certainly “no” if the
subsets or their complements are empty. The answer is “yes” if the some element of Simg

can be mapped to something smaller than the minimal element smin of Sorg. The answer
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is “no” if all elements of Simg are mapped by G to something strictly larger than smin. And if
some π ∈G maps some element k ∈ Simg exactly to smin, the answer is given by answering
the same question recursively for π(Simg) \ {smin}, Sorg \ {smin}, and the group G[smin]. Switch
tables allow to run this recursive algorithm without the administration of new stabilizer
groups. The new adaption is based on the following.

Lemma 5. Consider a switch table st(·, ·) for a subgroup G of Sn . Let 1≤ i ≤ n, and let G[i−1]

be the point-wise stabilizer of [i −1] in G. Moreover, let Sorg and Simg be subsets of [n ] \ [i −1]
with identical cardinality. Then:

(i) If Sorg = ; or Sorg = [n ]\[i−1], then there is no permutationπ ∈G[i−1] withπ(Simg)<lexSorg.

(ii) If G is the trivial group or i >max(effRowSet), then there is a permutation π ∈G[i−1]

with π(Simg)<lex Sorg if and only if Simg<lex Sorg.

(iii) If i ∈ Sorg, then:

(a) If i ∈ Simg and there is a permutation π′ ∈G[i ] with π′
�

Simg \ {i })
�

<lex Sorg \ {i }, or

(b) if there is a non-trivial switch st(i , ji )with ji ∈ Simg and a permutation π′ ∈G[i ]
with π′

�

st(i , ji )(Simg \ { ji })
�

<lex Sorg \ {i },

then there is a permutation π ∈G[i−1] with π(Simg)<lex Sorg. If none of these two cases
occurs, then there is no permutation π ∈G[i−1] with π(Simg)<lex Sorg.

(iv) If i /∈ Sorg, then:

(a) If i ∈ Simg, or

(b) effColSet(i )∩Simg 6= ;, or

(c) there is a permutation π′ ∈G[i ] with π′
�

Simg

�

<lex Sorg, or

(d) there is a switch st(i , ji )with ji /∈ Simg and a permutationπ′ ∈G[i ]withπ′
�

st(i , ji )(Simg)
�

<lex

Sorg,

then there is a permutation π ∈G[i−1] with π(Simg)<lex Sorg. If none of these four cases
occurs, then there is no permutation π ∈G[i−1] with π(Simg)<lex Sorg.

In particular, for i = 1 and Simg = Sorg these conditions characterize whether there is a
permutation π ∈G with π(Sorg)<lex Sorg.

Proof. There is a permutation π ∈G[i−1] with π(Simg)<lex Sorg if and only if there is a switch
product st(n , jn ) · · ·st(i , ji )with

�

st(n , jn ) · · ·st(i , ji )
�

(Simg)<lex Sorg, by [14].
Case (i) and (ii) are straight-forward.
Case (iii)(a) is formally required to account for the identity switch in row i ; the argument is

then the same as for the next case. In case (iii)(b), consider the case when there is a non-trivial
switch st(i , ji )with ji ∈ Simg and a permutationπ′ ∈G[i ]withπ′

�

st(i , ji )(Simg\{ ji })
�

<lexSorg\{i }.
Consider π := π′ ·st(i , ji ). Then, π( ji ) = i =min(Sorg), since π′ ∈ G[i ] stabilizes i . Because
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ji ∈ Simg, it follows that π(Simg)<lex Sorg if and only if π′(Simg \ { ji })<lex Sorg \ {i }, which is the
case by the choice of π′. If there is no non-trivial switch st(i , ji ) with ji ∈ Simg, then all
switch products st(n , jn ) · · ·st(i , ji )map all elements of Simg to elements strictly larger than
i = min(Sorg), and Sorg is therefore strictly lex-smaller than any subset in the G[i−1]-orbit
of Simg. If, moreover, for all switches st(i , ji )with ji ∈ Simg the G[i ]-orbit of st(i , ji )(Simg \ { ji })
contains no lex-smaller element than Sorg \ {i }, then no switch product st(n , jn ) · · ·st(i , ji )
with ji ∈ Simg can lex-decrease Simg below Sorg.

In case (iv)(a) the minimal element of Sorg is strictly larger than the minimal element i
of Simg, thus Simg<lex Sorg so that π= id will do the job. In case (iv)(b) there is a switch st(i , ji )
mapping an element of Simg to i <min(Sorg), so π= st(i , ji ) = id · · · id ·st(i , ji )maps Simg to a
lex-smaller subset than Sorg. The cases (iv)(c) and (d) are essentially analogous to case (iii)(a)
and (b).

The final assertion follows from backward induction on i , rooted at the case i = n with
the trivial group G[n ].

Call the application of Lemma 5 the modified switch-table method for checking lexi-
cographic minimality of a subset in its orbit; see Algorithm 13 in Section 4 for a possible
implementation.

4 Algorithms

In this section, the following are introduced and analyzed:

• Variants of SymLexSubsetRS (Algorithm 5 in Section 2) supporting global and local
auxiliary data, counting only maximal elements, minimal non-elements, and feasible
elements, resp., and utilizing semi-deciding algorithms to prune the enumeration,
i.e., roughly speaking, algorithms that correctly answer “TRUE” (i.e., “prune”) only if a
subset is not a subset of an interesting set and “FALSE” (i.e., “continue”) if a subset
might or might not be a subset of an interesting set.

• Three new ways to implement IsLexMin in those variants. Recall that this subroutine
checks whether or not a subset is lex-min in its orbit.

4.1 Variants of Symmetric Lexicographic Subset Reverse Search

First, the algorithm SymLexSubsetRS_withData is presented, which is a slightly modified
form of SymLexSubsetRS. The reason is that for most non-trivial problems auxiliary data
has to be computed and to be kept in memory. The are two principal ways auxiliary data
can be made available. Data that depends on the current subset in the reverse-search tree is
stored in a node of the reverse-search tree together with the subset. Data independent of
the subset can be stored globally, e.g., together with the problem data.

To keep track of this in the following, specify by N = (SN , LN ) a node in the reverse-
search tree consisting of a subset SN ∈ 2[n ] and a subset-specific collection of data LN , which
formally is just a tupel of mathematical objects. The global collection of data is denoted by G.
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Algorithm: SymLexSubsetRS_withData(n,D, G, G, N )

Input: n ∈N, a downsetD of 2[n ], a subgroup G of the automorphism group ofD, global
data G, a node N = (S , L)with canonical S ∈D and L local data

Output: the number of canonical S ′ inD with S ⊆lex lex-minS ′

output S and c ← 1 ; /* count S */
for i =max(S ) +1, . . . , n do /* ordered traversal of new maximal elements */

S ′← S ∪{i } ; /* add a new element on the right */
default initialize L′ ; /* prepare a local data structure */
(answer, L′)← IsLexMin(S ′,G, G, L, L′) ; /* lex-min check */
if answer= FALSE then /* if new set is not lex-min in its orbit */

continue ; /* next loop element */

(answer, L′)← IsInDownset(S ′,D, G, L, L′) ; /* membership check */
if answer= FALSE then /* if new set is not in D */

continue ; /* next loop element */

N ′← (S ′, L′) ; /* build new node */
c ← c +SymLexSubsetRS_withData(n,D, G, G, N ′) ; /* recurse */

return c;

Algorithm 7: A variant of symmetric lexicographic subset reverse search with explicit
use of global and local auxiliary data

Any implementation of SymLexSubsetRS_withData must specify the exact structure of L
and G. It is desirable that the local data for a new node can be computed during one or both
of the rather expensive subroutines IsLexMin and IsInDownset. A possible such layout can
be seen in Algorithm 7. The run-time complexity depends on the run-time complexities of
the subroutines and can be derived readily from the underlying reverse search structure
– it is in O

�

n (τ(IsLexMin) +τ(IsInDownset))|D/G|
�

, assuming initializing local data and
building a new node are dominated by the other subroutines.

At times, not the cardinality of the downsetD up to symmetry is of interest but only the
number of its maximal elements. This is, e.g., the case for the enumeration of cocircuits up
to symmetry. In such situations, the downset D is only implicitly defined as the downset
of all subsets of the subsets one is really interested in. This models the process building
interesting objects from scratch element-by-element. In the ordered reverse-search tree of
subsets considered in the algorithms so far, the added elements are always larger than the
current maximal element. Therefore, the following notions are defined:

Definition 3. For a subset S ∈D an expansion of S is an element i ∈ [n ]\S so that S ∪{i } ∈D.
A right-expansion is an expansion i with i >maxS . The subset S is maximal if there is no
expansion for it, and it is right-maximal if there is no right-expansion for it. The subset S is
right-completable if there is a set S ′ that is maximal inD so that S ′ lex-contains S .

By definition, each right-expansion of a set lex-contains that set. Algorithm 8 shows the
adapted algorithm enumerating the maximal elements in a downset. It might appear that
the leaves of the enumeration tree automatically correspond to maximal subsets inD. This,
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however, is unfortunately not the case – the leaves are, by construction, only right-maximal:
Consider an arbitrary maximal non-empty subset S in D. Then, e.g., the enumeration
branch starting with the second smallest element in S will have S \minS as one of its leaves,
which is obviously not maximal in D . Thus, a maximality check has to be performed on the
leaves, and non-maximal leaves are simply ignored for the count. Sometimes the reverse-
search tree can be pruned by semi-deciding whether or not a subset can be right-completed.
The subroutine SemiIsNotRightComp in Algorithm 8 takes care of that. Whenever it can
be detected locally that an expansion is unavoidable on the path to a maximal subset, one
can skip the traversal of supersets not containing it. This idea is supported by the subrou-
tine IsInEachMax. The run-time complexity is in O

�

(n (τ(IsLexMin) + τ(IsInDownset) +
τ(SemiIsNotRightComp) +τ(IsInEachMax)) +τ(IsMaxInDownset))|Dnonprunable/G|

�

, where
Dnonprunable is the subset of D containing subsets for which SemiIsNotRightComp returns
“FALSE”.

Other applications are rather interested in objects that can be better represented as
the minimal subsets not contained in a downset. The enumeration of all circuits up to
symmetry is an example for such a use-case.

Definition 4. For a subset R ∈ 2[n ] \D a reduction of R is an element i ∈R so that R \ {i } ∈
2[n ]\D. The subset R is co-minimal w.r.t.D if it contains no reduction. It is right-co-minimal
if its maximal element is not a reduction. A subset S inD is right-exitable w.r.t.D if there is
a set R that is co-minimal w.r.t.D so that R lex-contains S .

The idea for a reverse-search algorithm is to adapt SymLexSubsetRSMax_withData:
add elements until the first non-member is met and check afterwards if the resulting
set is a minimal non-member. Algorithm 9 shows a possible layout for this. The sub-
routine SemiIsNotRightExit can help to prune the tree. For the enumeration of cir-
cuits as in Section 8 there is no sensible such option known, but for other applications
there may be one. The run-time complexity is in O

�

n (τ(IsLexMin) + τ(IsInDownset) +
τ(SemiIsNotRightExit) +τ(IsCominOfDownset))|Dnonprunable/G|

�

, whereDnonprunable is the
subset ofD containing subsets for which SemiIsNotRightExit returns “FALSE”.

Occasionally, the representation of interesting objects as the maximal or co-minimal
elements of a downset leads to a very difficult membership test. For example, it is NP-
complete to decide whether or not a set of simplices is a subset of any triangulation. See
Section 9 for more details. Then, it can be preferable to travers an auxiliary downset with
simpler membership test that contains all feasible subsets and check for extendability to a
feasible subset separately.

In the following, distinguish for a subset S of a feasible subset between an expansion (see
Definition 3) of S by an element, which remains inD, and an extension of S by an element,
which remains a subset of a feasible subset. Most interesting is the case where the feasible
subsets form an antichain in [n ], i.e., no feasible subset contains any other feasible subset.

Definition 5. LetF be an antichain in 2[n ]. Members ofF are called feasible subsets. Each
S ∈F is said to represent a solution. Extendable subsets are subsets of feasible subsets. A
subset S is right-extendable if it is extendable to a feasible subset S ′ so that S ′ lex-contains S .
In this case, S ′ is called a feasible right-completion of S .
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Algorithm: SymLexSubsetRSMax_withData(n,D, G, G, N )

Input: n ∈N, a downsetD of 2[n ], a subgroup G of the automorphism group ofD, global
data G, a node N = (S , L)with a canonical S ∈D and L local data

Output: the number of canonical S ′ maximal inD with S ⊆lex S ′

c ← 0 ; /* do not count S yet */
for i =max(S ) +1, . . . , n do /* ordered traversal of new maximal elements */

S ′← S ∪{i } ; /* add a new element on the right */
default initialize L′ ; /* prepare a local data structure */
(answer, L′)← IsLexMin(S ′,G, G, L, L′) ; /* lex-min check */
if answer= FALSE then /* if new set is not lex-min in its orbit */

continue ; /* next loop element */

(answer, L′)← IsInDownset(S ′,D, G, L, L′) ; /* membership check */
if answer= FALSE then /* if new set is not in D */

continue ; /* next loop element */

(answer, L′)← SemiIsNotRightComp(S ′,D, G, L, L′) ; /* completability */
if answer= TRUE then /* if new set is not right-completable */

continue ; /* next loop element */

N ′← (S ′, L′) ; /* build new node */
c ← c +SymLexSubsetRSMax_withData(n,D, G, G, N ′) ; /* recurse */
(answer, L′)← IsInEachMax(S ′,D, G, L, L′) ; /* check unavoidability */
if answer= TRUE then /* if new set is in each right-completion */

break ; /* exit the loop */

if c > 0 then /* if supersets in D found */
return c ; /* return no. of max. supersets of S in D */

if IsMaxInDownset(S, G, L) then /* if S is maximal in D */
output S and return 1 ; /* return the count for S */

Algorithm 8: A variant of symmetric lexicographic subset reverse search for maximal
subsets with explicit use of global and local auxiliary data

If only a small fraction of the non-elements in a subset lead to an element of the downset,
then the iteration over all new maximal elements followed by membership tests can lead to
an unnecessarily large number of loop traversals. In the enumeration of triangulations this
case occurs, since, in general, out of the many simplices not in a partial triangulation only a
few can be added. In such cases it may be possible to compute all possible right-expansions
of a subset before the loop and iterate only over those. The following notion supports this
idea.

Definition 6. The right-expansion sequence E (S ) of S is the sequence i1 < · · ·< i|E (S )| of all ik ,
k = 1, . . . , |E (S )|, with i1 >maxS and S ∪{ik} ∈D.

For the enumeration of feasible subsets with expensive exact extendability check it is
desirable to prune the enumeration tree as soon as one knows that a subset is not right-
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Algorithm: SymLexSubsetRSComin_withData(n,D, G, G, N )

Input: n ∈N, a downsetD of 2[n ], a subgroup G of the automorphism group ofD, global
data G, a node N = (S , L)with canonical S ∈D and L local data

Output: the number of canonical S ′ cominimal w.r.t.D with S ⊆lex S ′

c ← 0 ; /* as a member, S cannot be co-minimal */
for i =max(S ) +1, . . . , n do /* ordered traversal of new maximal elements */

S ′← S ∪{i } ; /* add a new element on the right */
default initialize L′ ; /* prepare a local data structure */
(answer, L′)← IsLexMin(S ′,G, G, L, L′) ; /* lex-min check */
if answer= FALSE then /* if new set is not lex-min in its orbit */

continue ; /* next loop element */

(answer, L′)← IsInDownset(S ′,D, G, L, L′) ; /* membership check */
if answer= FALSE then /* if new set is right-co-minimal */

if IsCominOfDownset(S ′, G, L, L′) then /* if set is co-minimal */
output S ′ and c ← c +1 ; /* count S ′ */
continue ; /* next loop element */

(answer, L′)← SemiIsNotRightExit(S ′,D, G, L, L′) ; /* exitability */
if answer= TRUE then /* if new set is not right-exitable */

continue ; /* next loop element */

N ′← (S ′, L′) ; /* build new node */
c ← c +SymLexSubsetRSComin_withData(n,D, G, G, N ′) ; /* recurse */

return c ;

Algorithm 9: A variant of symmetric lexicographic subset reverse search for co-
minimal subsets with explicit use of global and local auxiliary data

extendable. This paper suggests an incomplete check that returns TRUE if a subset is
not right-extendable and FALSE if the subset might be right-extendable. Algorithm 10
shows a possible pseudo-code for this method that will be used in the enumeration of all
triangulations of a point configuration in Section 9. If e max is the largest cardinality of any
expansion sequence, then the run-time complexity is in O

�

(e max(τ(IsLexMin)+τ(Expand)+
τSemiIsNotRightExt) + τ(IsFeasible))|Dnonprunable/G|

�

, where Dnonprunable is the subset
ofD containing subsets for which SemiIsNotRightExt returns “FALSE”.

4.2 New Checks for the Lexicographic Minimality of Subsets

Next, the findings from Section 3 are used to specify suitable local data to accelerate the
lex-min check in orbits. In particular, the critical-element-table critelemS of a subset will be
used as local data stored together with S in a node. It can be seen that one can update the
critical-element table for the next node during its usage in the lex-min check.

First, the iterative method IsLexMin_viaIter(S ′,G, G, L, L′) is described, where L con-
tains CET, which is a function-value table of critelemS . It neither needs global data G nor the
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Algorithm: SymLexSubsetRSFeas_withData(n,D,F , G, G, N )

Input: n ∈N, a downsetD of 2[n ], a subsetF ⊆D of feasible subsets, a subgroup G of the
automorphism group ofD, global data G, a node N = (S , L)with canonical S ∈D and
L local data encompassing the right-expansion sequence E (S )

Output: the number of canonical S ′ feasible inD with S ⊆lex S ′

if IsFeasible(S ,F , G, L) then /* if S is feasible */
output S and return 1 ; /* count S */

c ← 0 ; /* do not count S */
for j = 1, . . . , |E (S )| do /* ordered traversal of right-expansions */

default initialize L′ ; /* prepare a local data structure */
(break,S ′, L′)← Expand(S , E (S ) j , G, L, L′) ; /* expand to the right */
if break= TRUE then /* if expansion returns to stop */

break ; /* exit loop */

(answer, L′)← IsLexMin(S ′,G, G, L, L′) ; /* lex-min check */
if answer= FALSE then /* if new set is not lex-min in its orbit */

continue ; /* next loop element */

/* incomplete right-extendability check: */
(answer, L′)← SemiIsNotRightExt(S ′,D,F , G, L, L′) ;
if answer= TRUE then /* if new set is certainly not right-ext. */

continue ; /* next loop element */

N ′← (S ′, L′) ; /* build new node */
c ← c +SymLexSubsetRSFeas_withData(n,D, G, G, N ′) ; /* recurse */

return c ;

Algorithm 10: A variant of symmetric lexicographic subset reverse search for feasible
subsets with pruning by an incomplete extendability check

initialized local data L′ for S ′. In case the answer is “TRUE”, the complete updated critical-
element table of S ′ is stored in CET′ representing a function-value table of critelemS ′ , which
will be part of L′. In case the answer is “FALSE”, CET′ will only partially be updated. However,
this is irrelevant, since this answer leads to immediate pruning. The function iterates over
the whole symmetry group but is quite lean inside the loop. Algorithm 11 shows a possible
listing in pseudo-code. Its run-time complexity amortized over all possible instances is in
O (|G|) under the assumption that on average for only a 1

n -fraction of the permutations the
added new maximal element of the new subset is mapped exactly to the critical element of
the previous subset.

Next, the set-based variant IsLexMin_viaSets(S ′,G, G, L, L′) is described, where L con-
tains CEC, which is a function-value table of critclassS . Global data G containing (HEC, IEC,DEC)
are needed, which are function-value tables for hitclass, incclass, and decclass, respectively.
It does not need the initialized local data L′ for S ′. Algorithm 12 shows the pseudo-code for
this.

Finally, the modified switch-table method for larger symmetry groups is implemented.
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Algorithm: IsLexMin_viaIter(S ′, G, CET)

Input: a set S ′, a subgroup G of Sn , and the critical-element table CET= critelemS

of S = S ′ \maxS ′

Output: (TRUE,CET′ = critelemS ′ ) if S ′ = lex-minG(S ′) and (FALSE,−) otherwise
CET′←CET ; /* copy the old critical-element table */
for π ∈G do /* iterate over G */

j ←CET[π] ; /* retrieve critical element */
if j =∞ then /* if π stabilizes S */

if π(maxS ′)<maxS ′ then /* if π decreases maxS ′ */
return (FALSE,−) ; /* π is lex-decreasing */

else if π(maxS ′)>maxS ′ then /* if π increases maxS ′ */
CET′[π]←maxS ′ ; /* update critical element */

else /* π strictly lex-increases S */
if π(maxS ′)< j then /* if π decreases maxS ′ beyond j */

return (FALSE,−) ; /* π is lex-decreasing */

else if π(maxS ′) = j then /* if π maps maxS ′ to crit. element */
j ′←min

�

S ′4π(S ′)
�

; /* compute critical element of S ′ */
if j ′ ∈π(S ′) then /* if new critical element is in π(S ′) */

return (FALSE,−) ; /* π is lex-decreasing */

else /* if new critical element is not in π(S ′) */
CET′[π]← j ′ ; /* update critical-element table */

return (TRUE,CET′);

Algorithm 11: The iteration-based critical-element method

Algorithm 13 is a utilization of Lemma 5 from Section 3. The advantage compared to
Algorithm 6 is that it recursively removes elements from the subsets that play no role in the
lex-comparison. The advantage compared to the algorithm in [24] is that one only uses a
single group representation, namely a switch table, which avoids the creation and deletion
of non-trivial local data structures, namely stabilizers, during the recursion.

It is clear that for the critical-element method a very large order of the symmetry group
is prohibitive, so that in those cases the modified switch table method is mandatory. For
groups of moderate order that can be stored completely in main memory, it is difficult to
predict precisely which method is faster. This is mainly due to the fact that in an analysis
of the recursion for the modified switch-table method it is difficult to exploit the group
structure.

Therefore, as a simplification, a hyper-amortized analysis is presented indicating the
parameter values for which the critical-element method is typically preferable. The idea
is based on a drastically simplified probability model for the objects involved. In hyper-
amortized analysis, the input subsets are considered uniformly and independently dis-
tributed among all possible subsets, not considering their extendability to feasible subsets
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Algorithm: IsLexMin_viaSets(S ′,G, (HEC, IEC,DEC),CEC)

Input: a set S ′, a subgroup G of Sn represented by its hit-element, increasing-element, and
decreasing-element classifications HEC, IEC, and DEC, the critical-element
classification CEC= critclassS of S = S ′ \maxS ′

Output: (TRUE,CEC′ = critclassS ′ ) if S ′ = lex-minG(S ′) and (FALSE,−) otherwise
if DEC[maxS ′][maxS ′]∩CEC[∞] 6= ; then /* check for case I */

return (FALSE,−) ; /* S ′ is not lex-min */

if ∃i ∈ S : DEC[maxS ′][i ]∩CEC[i ] 6= ; then /* check for case II */
return (FALSE,−) ; /* S ′ is not lex-min */

CEC′←CEC ; /* copy the old critical-element classification */
for j ∈ S do /* iterate over S */

for π ∈CEC[ j ]∩HEC[maxS ′][ j ] do /* check j for case III */
j ′←min

�

S ′4π(S ′)
�

; /* compute critical element of S ′ */
if j ′ ∈π(S ′) then /* if new critical element is in π(S ′) */

return (FALSE,−) ; /* π is lex-decreasing */

else /* if new critical element is not in π(S ′) */
CEC′[ j ]←CEC′[ j ] \ {π} ; /* update classification */
CEC′[ j ′]←CEC′[ j ′]∪{π} ; /* update classification */

for π ∈ IEC[maxS ′]∩CEC[∞] do /* permutations no longer stabilizing */
CEC′[∞]←CEC′[∞] \ {π} ; /* update classification */
CEC′[maxS ′]←CEC′[maxS ′]∪{π} ; /* update classification */

return (TRUE,CEC′);

Algorithm 12: The set-based critical-element method

or their dependence on the earlier subsets. Finally, instead of a probability model for the
possible permutation groups, a probability model for permutation subsets with uniform
probabilities is considered. This probability model ignores that the subsets occurring as in-
puts actually are feasible subsets in a given downset and that they have been reached by the
enumeration algorithm somehow. Moreover, it ignores that the actual sets of permutations
form groups. Thus, the respective analysis cannot give the amortized effort for a particular
problem instance. It can, however, be roughly interpreted as a higher-aggregated informa-
tion about the average effort when the respective methods are applied to all conceivable
problem instances with similar parameters, where all subsets are equally likely to occur
as feasible subsets in some instance and where all permutations are individually equally
likely to occur in some group. To stress the reference to the uniform probability model all
expected values with respect to this model are called typical values.

For the analysis it is important to identify from which operations the main effort results.
Profiling of actual code gives the hint that three types of operations cause the main part of
the computation times: applying a permutation to a subset or a singleton, passing a copy of
a subset as an argument to a recursive call, and lex-comparing a subset or a singleton with
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Algorithm: IsLexMin_viaSwitchesMod(i ,S ,S ′,G,ST)

Input: an integer i ∈ [1, n ], a subset S of {i , . . . , n} (the original subset), a subset S ′ of
{i , . . . , n} (the image of S under a partial switch product), a subgroup G of Sn , and a
switch table ST of G

Output: TRUE if lex-minG[i−1](S ′) 6<lex S and FALSE otherwise
if |S |= 0 or |S |= n − i +1 then /* no or all elements? */

return TRUE ; /* subsets identical and invariant */

if i >max effRowSet(ST) then /* no non-trivial permutation in group? */
return (S ′ 6<lex S ) ; /* subset invariant */

/* case distinction whether i ∈ S: */
if i ∈ S then

if i ∈ S ′ then
/* recursively check a switch product with leading identity: */
if IsLexMin_viaSwitchesMod(i +1,S \ {i },S ′ \ {i },G,ST)= FALSE then

return FALSE;

/* travers all switches mapping an element of S ′ to i : */
for j ∈ effColSet(i )∩S ′ do

if IsLexMin_viaSwitchesMod(i +1,S \ {i },ST[i ][ j ]
�

S ′ \ { j }
�

,G,ST)= FALSE then
return FALSE;

return TRUE ; /* no decreasing switch product found */

else
/* compare minimal elements using min(S )> i : */
if i ∈ S ′ then

return FALSE;

/* check for a switch mapping an element of S ′ to i : */
if effColSet(i )∩S ′ 6= ; then

return FALSE;

/* recursively check a switch product with leading identity: */
if IsLexMin_viaSwitchesMod(i +1,S ,S ′,G,ST)= FALSE then

return FALSE;

/* travers all switches mapping a non-element of S ′ to i : */
for j ∈ effColSet(i ) \S ′ do

if IsLexMin_viaSwitchesMod(i +1,S ,ST[i ][ j ](S ′),G,ST)= FALSE then
return FALSE;

return TRUE ; /* no decreasing switch product found */

Algorithm 13: The modified switch-table method
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its image under a permutation. Applying a permutation π to a subset S means generating
a new subset consisting of all π(i )with i ∈ S . Passing a subset is essentially a special case
with π(i ) = i . Lex-comparing a subset or a singleton with its image requires the comparison
of some the elements with image elements, which will not be counted extra, since for
each comparison there is at least one image computation. The only substantial effort that
does not lead to single-element evaluations is the lex-comparison of two subsets, which
happens in exactly one spot in the modified switch-table method. In order to unify the
effort estimation, we count m single-element evaluations for the lex-comparison of two
m-subsets. In this generalized sense, the typical number of single-element evaluations
π(i ) is investigated for permutations π ∈G and elements i ∈ S during the execution of the
algorithms.

In the following, the effort of IsLexMin for either method is estimated. In “FALSE”-
instances the typical run-time is difficult to tell because it is not clear how early a lex-
decreasing permutation will be found. Therefore, it is assumed for the analysis that any
premature answer does not lead to an immediate stop; rather the algorithm is carried out
until all relevant (depending on the method) permutations have been processed. This is
equivalent to the typical effort for counting the lex-decreasing permutations.

The analysis of the naive method (check each permutation whether or not it lex-decreases
the subset) and the critical-element method is straight-forward.

Theorem 1. Consider subsets G of Sn with order k and degree n. Then:

(i) The typical number σnve(m ) of single-element evaluations of the naive method on
instances with an m-element subset Sorg of IsLexMin isσnve(m ) = k m.

(ii) The typical numberσcet(m ) of single-element evaluations of the iteration-based critical-
element method on instances with an m-element subset Sorg of IsLexMin_viaIter is
σcet(m ) = k n+m−1

n = n+m−1
nm k m.

Proof. For the naive method, k permutations need to be applied to the m-element subset.
For the critical-element method, typically 1

n k permutations map the new maximal element
of Sorg to the critical element, so that, in the worst case, m single-element evaluations are
necessary to compute the new critical element from scratch. Moreover, typically n−1

n k
permutations do not map the maximal element of Sorg to the critical element, incurring only
one single-element evaluation each.

Recall that the modified switch-table method takes two subsets of identical cardinality
as input and decides whether or not the second can be lex-decreased below the first. The
analysis for the modified switch-table now works in two steps. First, for a given switch-
table the typical number of single-element evaluations is analyzed on two subsets chosen
uniformly and independently at random.3 Second, for a typical switch table of a random

3Note that this means already a simplification because for the applications of the modified switch-table in
this paper, Sorg and Simg are not stochastically independent. On the contrary: in the top-level call, they are
identical. The hope is that over all instances that might ever be dealt with in any recursion level, they are
sufficiently independent.
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subset of permutations the typical number of non-trivial switches in each row and the
typical maximal effective row are analyzed.

It is often more instructive to estimate the factor by which a (non-trivial) method for
IsLexMin is faster than the naive method.

Definition 7. Let met be a method for IsLexMin. Then relative effortκmet(`) of met is defined
as the typical number of single-element evaluationsσmet(`) of met divided by the typical
numberσnve(`) of single-element evaluations of the naive method on random `-element
subsets.

Example 1. By Theorem 1, the relative effort of the critical-element methodκcet(`) is
n+m−1

nm ≤
2

m , which is a speed-up linear in m < n .

It will turn out that the following parameters are crucial for the efficiency of a switch
table. They all contribute to measures for how many times the various branches in the
recursions are typically traversed.

Definition 8. Consider a switch table ST for a group of permutations of degree n with
maximal effective row r and ci non-trivial switches in row i , i = 1, 2, . . . , r . Moreover, consider
subsets of cardinality `with 0≤ `≤m < n .

The level-i order k[i ] of ST is defined as the number of switch-products in ST from rows
at least i , that is

k[i ] :=
r
∏

j=i

(c j +1). (9)

With this, the order k of the group equals k[1].
The level-i subset density and the level-i subset codensity of ST are defined for 0 < ` <

n − i +1 as

δi ,` :=
`

n − i +1
and δ̄i ,` :=

n − i +1− `
n − i +1

= 1−δi ,` , respectively. (10)

For `≤ 0 and `≥ n − i +1 define the exceptional values

δi ,` := δ̄i ,` := 0. (11)

The level-i transitivity gap of ST is defined for 0≤ `≤ n − i − ci as

ϑi ,` :=

�

n − i +1− (ci +1)
�

`

(n − i +1)`
, (12)

where (x )` := x (x −1) · · · (x − `+1), as usual. For ` > n − i +1− (ci +1) the transitivity gap is
defined to be zero. In algorithm IsLexMin_viaSwitchesMod, call the branch at recursion
level i with i ∈ Sorg the level-i element branch and the branch with i /∈ Sorg the level-i non-
element branch. The level-i reduction factor of the element branch of ST is defined as

α(1)i ,` :=δ2
i ,`, (13)
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and the level-i reduction factor of the non-element branch of ST is defined as

α(0)i ,` := δ̄i ,`ϑ`,. (14)

For p ∈ N, a branch-selection vector of length p is a binary vector b = (b1, b2, . . . , bp ) ∈
{0,1}p , where () is the only branch selection vector for p = 0. Let B (p ) be the set of all
branch-selection vectors of length p withB (p ) = ; for all p < 0. Let λ(b) be the number of
ones in b, and denote by λ j (b) the number of ones in b among the first j −1 coordinates
of b, 1≤ j ≤ p .

For i ∈ [r ] and a branch-selection vector of length p ≤ r −i+1 let its level-i branch weight
wi ,`(b) be the following product of p reduction factors, where an empty product (p = 0) is
defined to be one:

wi ,`(b) :=
p
∏

t=1

α(bt )
i+t−1,`−λt (b)

. (15)

Finally, let its node weight be

v`(b) := (`−λ(b))+ =max(`−λ(b), 0). (16)

These notions are motivated by the following: The subset density and codensity deter-
mine the probabilities with which the two branches in the modified switch-table method are
entered. The exceptional zero-values for both model the cases where the modified switch-
table method returns TRUE without entering any branch. The transitivity gaps indicate the
fraction of `-subsets for which no image of a switch in row i of ST contains i . For example,
in a switch table of a transitive group, the level-1-transitivity gap is zero even for `= 1 (one-
element subsets), because any element can be mapped to 1. The reduction factors compute
the probabilities that one of the switches in a row has to be processed during the execution
of the algorithm at the corresponding recursion level. A branch selection vector of length p
encodes for recursion levels i , i + 1, . . . , i +p − 1 and a fixed Sorg which of the branches is
entered by the algorithm: A “1” selects the element-branch, a “0” selects the non-element
branch. In this sense, all paths in the recursion tree are indexed by branch-selection vectors.
The branch weights are products of reduction factors, where the first index (indicating the
row of ST) is increased with each new factor, and the second index (indicating the cardinality
of a processed subset) is decreased directly after an element branch has been entered.

With these parameters, all of which can easily be derived directly from the switch table
and the subsets under consideration, the following can be said about its efficiency:

Theorem 2. Let ST be a switch table for permutations in Sn with maximal effective row r
and ci non-trivial switches in row i for i = 1, 2, . . . , r . LetB (i ) be the set of all branch-selection
vectors of length i , 1≤ i ≤ r .

Then, the typical numberσmst(m ) of single-element evaluations for two independently
random m-subsets Sorg,Simg is

σmst(m ) =
�

∑

b∈B (r )

w1,m (b)vm (b)
�

k +
r
∑

j=1

�

�

∑

b∈B ( j )

w1,m (b)vm (b)
� c j

c j +1
·

k

k[ j+1]

�

(17)
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Remark 1. Since the r th summand of the second sum is actually cr
cr+1 times the first sum-

mand, an alternative expression forσmst(m ) is:

σmst(m ) =
�

1+
cr

cr +1

�

�

∑

b∈B (r )

w1,m (b)vm (b)
�

k (18)

+
r−1
∑

j=1

�

�

∑

b∈B ( j )

w1,m (b)vm (b)
� c j

c j +1
·

k

k[ j+1]

�

. (19)

Proof. Let ST be as in the assumptions of the theorem. For 1≤ i ≤ r and 1≤ `≤m < n call
fi (`) the number of single-element evaluations the modified switch-table method with start
row i typically needs on two random `-element subsets Sorg and Simg of [n ]\[i−1]. For i = r+1,
no non-trivial switches are available, and after one lex-comparison of the given `-element
subsets incurring ` single-element evaluations the answer is immediate. Consequently,
fr+1(`) = `. Moreover, if `= 0 and `= n − i +1 both sets are either the empty or the complete
subset, thus fixed under any action of a switch in row i and higher, and the recursion subtree
needs no further single-element evaluations, leading to fi (0) = fi (n − i +1) = 0.

The element-branch in the modified switch-table method has i ∈ Sorg. Given a ran-
dom Sorg, this branch is entered with probability `

n−i+1 =δi ,`.
In the element branch, the identity is considered only if i ∈ Simg, and non-trivial switches

ST[i ][ j ] are considered only if j ∈ Simg. For fixed j ≥ i one has j ∈ Simg with probability
`

n−i+1 =δi ,`.
4 Thus, only a fraction of δi ,` of the (ci +1)many switches including one identity

in row i are processed at all. Processing a switch incurs `−1 single-element evaluations for
the non-trivial switches plus a recursive call with two `− 1-element subsets for row i + 1
of the switch table for the ci non-trivial switches plus the identity. The typical number of
single-element evaluations in the element branch is, therefore,δi ,`

�

ci (`−1)+(ci+1) fi+1(`−1)
�

.
In the non-element branch with i /∈ Sorg, the answer is immediately FALSE in this branch

whenever i ∈ Simg or there exists a non-trivial switch ST[i ][ j ]with j ∈ Simg; in this case there
are no subsequent single-element evaluations in this branch. If all ` elements of Simg ⊆
{i , i +1, . . . , n} are among the trivial columns j > i , then the remaining switches have to be
processed. Therefore, with probability (n−i+1−(ci+1))`

(n−i+1)`
= ϑi ,` neither the ci non-trivial switches

nor the identity lead to an immediate FALSE in this branch. This event incurs ` single-
element evaluations for all non-trivial switches plus a recursive call with two `-element
subsets with row i +1 for all non-trivial switches and the identity. Hence, the typical number
of single-element evaluations in the non-element branch is ϑi ,`

�

ci`+ (ci +1) fi+1(`)
�

.
Summarized, the following recursion for fi (`) is obtained with f1(m ) =σmst(m ):

fi (`) =α
(1)
i ,`

�

ci (`−1) + (ci +1) fi+1(`−1)
�

+α(0)i ,`

�

ci`+ (ci +1) fi+1(`)
�

. (20)

4At this point a difference occurs for Simg = Sorg, which occurs in the lex-min check for the case i = 1 and
`=m . Then, 1 ∈ Sorg implies (with probability one) 1 ∈ Simg, and, therefore, the probability that the identity has
to be processed is 1 instead of δ1,m , changing the expression δ2

1,m (c1+1) to δ1,m (δ1,m c1+1) in the results below.
This increases the typical number of single-element evaluations in the first recursion level. The difference is
the larger the smaller c1 is. Since this leads to more case-distinctions, in this paper only the analysis for two
independently random subset is carried out.
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Recall that the final comparison of `-subsets at maximal recursion level r +1 as well as the
empty-set case `= 0 and the full-set case `= n − i +1 lead to the boundary conditions

fr+1(`) = ` for all 1≤ `≤m , fi (0) = fi (n − i +1) = 0 for all 1≤ i ≤ r . (21)

In order to prove the theorem, it is sufficient show that the following function g is a solution to
the recursion for f , since the claim of the theorem can then be expressed asσmst(m ) = g1(m ):

g i (`) :=
�

∑

b∈B (r−i+1)

wi ,`(b)v`(b)
�

k[i ]+
r
∑

j=i

�

�

∑

b∈B ( j−i+1)

wi ,`(b)v`(b)
� c j

c j +1
·

k[i ]
k[ j+1]

�

. (22)

To this end, note that the following recursion holds for all 1 ≤ i ≤ r and 1 ≤ ` ≤m by
definition for the products of branch weights and node weights:

∑

b∈B (i )

wi ,`(b)v`(b) =α
(1)
i ,`

∑

b∈B (i−1)

wi+1,`−1(b)v`−1(b) +α
(0)
i ,`

∑

b∈B (i−1)

wi+1,`(b)v`(b). (23)

Moreover, the following recursion holds for the level-i orders:

k[i ] = (ci +1)k[i+1]. (24)

The boundary condition g r+1(`) = ` holds true, because the boundary cases k[r+1] = 1,
wi ,`(()) = 1, and v`(()) = ` imply

g r+1(`) (25)

=
�

∑

b∈B (0)

wi ,`(b)v`(b)
�

k[r+1]+
r
∑

j=r+1

�

�

∑

b∈B ( j−r )

wi ,`(b)v`(b)
� c j

c j +1
·

k[i ]
k[ j+1]

�

(26)

=wr+1,`(())v`(()) (27)

= `. (28)

The boundary conditions g i (0) = 0 and g i (n−i+1) = 0 hold true, becauseδi ,n−i+1 = δ̄i ,n−i+1 =
0 leading to zero reduction factors throughout. Moreover, g i (`) satisfies the recursion for-
mula for 1≤ `≤m and 1≤ i ≤ r , because

g i (`) =
�

∑

b∈B (r−i+1)

wi ,`(b)v`(b)
�

k[i ]+
r
∑

j=i

�

∑

b∈B ( j−i+1)

wi ,`(b)v`(b)
� c j

c j +1
·

k[i ]
k[ j+1]

(29)

(23),(24)
=

�

α(1)i ,`

∑

b∈B (r−i )

wi+1,`−1(b)v`−1(b) +α
(0)
i ,`

∑

b∈B (r−i )

wi+1,`(b)v`(b)
�

(ci +1)k[i+1] (30)

+
r
∑

j=i+1

�

�

α(1)i ,`

∑

b∈B ( j−i )

wi+1,`−1(b)v`−1(b) +α
(0)
i ,`

∑

b∈B ( j−i )

wi+1,`(b)v`(b)
�

(31)

·
c j

c j +1
·
(ci +1)k[i+1]

k[ j+1]

�

(32)

34



+
∑

b∈B (1)

wi ,`(b)v`(b)
ci

ci +1
·
(ci +1)k[i+1]

k[i+1]
(33)

=α(1)i ,`

�

∑

b∈B (r−i )

wi+1,`−1(b)v`−1(b)
�

(ci +1)k[i+1] (34)

+α(0)i ,`

�

∑

b∈B (r−i )

wi+1,`(b)v`(b)
�

(ci +1)k[i+1] (35)

+α(1)i ,`

r
∑

j=i+1

�

∑

b∈B ( j−i )

wi+1,`−1(b)v`−1(b)
� c j

c j +1
·
(ci +1)k[i+1]

k[ j+1]
(36)

+α(0)i ,`

r
∑

j=i+1

�

∑

b∈B ( j−i )

wi+1,`(b)v`(b)
� c j

c j +1
·
(ci +1)k[i+1]

k[ j+1]
(37)

+ ci wi ,`((1))
︸ ︷︷ ︸

=α(1)i ,`

v`((1))
︸ ︷︷ ︸

=`−1

+ ci wi ,`((0))
︸ ︷︷ ︸

=α(0)i ,`

v`((0))
︸ ︷︷ ︸

=`

(38)

=α(1)i ,`(ci +1)g i+1(`−1) +α(0)i ,`(ci +1)g i+1(`) +α
(1)
i ,` ci (`−1) +α(0)i ,` ci (`). (39)

Thus, g satisfies recursion (20), which completes the proof.

Theorem 2 can be used to derive simpler upper and lower bounds for the application of
the modified switch-table method. In order to prepare this, some monotonicity properties
of the quantities involved in Theorem 2 and Remark 1, respectively, are presented. Note,
that the monotonicity properties below do not imply any kind of monotonicity for the func-
tion fi (`) from the previous proof. In fact, it is not monotone at all, as plotting experiments
easily reveal. Thus, the exact evaluation of the recursion in Theorem 2 is the key to simpler
bounds.

Lemma 6. For all 1 ≤ j ≤ r ≤m, all 1 ≤ i ≤ j , all m − j + 1 ≤ ` ≤m, and all b ∈B ( j ) the
following hold:

(i) δ1,m− j+1 ≤δi ,` ≤δ j ,m .

(ii) δ̄ j ,m ≤ δ̄i ,` ≤ δ̄1,m− j+1.

(iii) ϑ j ,m ≤ ϑi ,` ≤ ϑ1,m− j+1.

(iv) α(1)1,m− j+1 ≤α
(1)
i ,` ≤α

(1)
m , j .

(v) α(0)j ,m ≤α
(0)
i ,` ≤α

(0)
1,m− j+1.

(vi)
�

α(1)1,m− j+1

�λ(b) �
α(0)j ,m

� j−λ(b)
≤w1,m (b)≤

�

α(1)j ,m

�λ(b) �
α(0)1,m− j+1

� j−λ(b)
.

(vii) m − j ≤ vm (b)≤m.

Proof. All claims follow directly from the definitions of the respective quantities.
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From this, the following conclusion can be drawn.

Corollary 1. Let ST be a switch table for permutations in Sn with maximal effective row r
and ci non-trivial switches in row i for i = 1, 2, . . . , r . LetB (i ) be the set of all branch-selection
vectors of length i , 1≤ i ≤ r .

Then, the typical numberσmst(m ) of single-element evaluations for two independently
random m-subsets Sorg,Simg with m ≥ r is bounded as follows:

�

1+
cr

cr +1

�

�

α(1)1,m−r+1+α
(0)
r,m

�r

k (m − r ) (40)

+
r−1
∑

j=1

�

α(1)1,m− j+1+α
(0)
j ,m

� j c j

c j +1
·

k (m − j )
k[ j+1]

(41)

≤σmst(m ) (42)

≤
�

1+
cr

cr +1

�

�

α(1)r,m +α
(0)
1,m−r+1

�r

k m (43)

+
r−1
∑

j=1

�

α(1)j ,m +α
(0)
1,m− j+1

� j c j

c j +1
·

k m

k[ j+1]
. (44)

Proof. Substituting the monotonicity properties 6 (vi) and (vii) for branch and node weights
into the formula in Remark 1 yields the following:

�

1+
cr

cr +1

�

� r
∑

λ=0

�

λ

r

�

�

α(1)1,m−r+1

�λ�

α(0)r,m

�r−λ�

(m − r )k (45)

+
r−1
∑

j=1

� j
∑

λ=0

�

λ

r

�

�

α(1)1,m− j+1

�λ�

α(0)j ,m

� j−λ�

(m − j ) ·
c j

c j +1
·

k

k[ j+1]
(46)

≤σmst(m ) (47)

≤
�

1+
cr

cr +1

�

� r
∑

λ=0

�

λ

r

�

�

α(1)r,m

�λ�

α(0)1,m−r+1

�r−λ�

mk (48)

+
r−1
∑

j=1

� j
∑

λ=0

�

λ

r

�

�

α(1)j ,m

�λ�

α(0)1,m− j+1

� j−λ
�

m ·
c j

c j +1
·

k

k[ j+1]
. (49)

The assertion now follows directly from an application of the binomial theorem.

One key learning can be derived right away: Whenever the sum of the two respective
largest possible reduction factors in the element and non-element branches is strictly smaller
than one (which is clear for identical parameters and is the common case otherwise), then
the gain of the switch table is exponential in r at the cost of an overhead that is essentially
linear in r . For a small r the overhead may outweigh the gain. For a large r the gain will in
most cases outweigh the overhead. Note that conclusions based on asymptotics in r alone
may be misleading, since r is not an unbounded, free input parameter but bounded by n
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and determined by both the structure of the symmetry group and the order of the elements
in [n ]. In the third application of this paper (triangulations, see Section 9), r is often small,
as will be shown later in this section.

The following result shows that if the reduction factors are uniformly close to 1
4 , then the

gain of the switch table is substantial.

Corollary 2. Let ST be a switch table for a subgroup G of Sn with maximal effective row r
and ci non-trivial switches in row i , i = 1, 2, . . . , r .

Assume there is a µ ∈ [1, 2)with

• α(1)i ,` ≤
µ
4 and α(0)i ,` ≤

µ
4 for all i = 1, 2, . . . , r and `=m − r +1, m − r +2, . . . , m;

• ci > 0 for all i = 1, 2, . . . , r .

Then, the relative effort κmst(m ) of ST is at most (r +1)
�

µ
2

�r
, i.e.,

σmst(m )≤ (r +1)
�µ

2

�r

k m = (r +1)
�µ

2

�r

σnve(m ). (50)

Moreover, these assumptions are, for example, satisfied if δr,m =
m

n−r+1 ≤
p

2−µ
2 and

ci +1≥

�

1− m−i+1

√

√µ(n − i +1)
4(n −m )

�

(n − i +1) for all i = 1, 2, . . . , r . (51)

Proof. The starting point is Corollary 1. Since ci > 0 for all i = 1, 2, . . . , r , the level-i +1 order

k[i+1] is at least 2r−i . This implies k
k[ j+1]
≤
�

1
2

�r− j
k . Moreover,

c j

c j+1 < 1. Therefore:

σmst(m )≤
�

1+
cr

cr +1

�

�

α(1)r,m +α
(0)
1,m−r+1

�r

k m (52)

+
r−1
∑

j=1

�

α(1)j ,m +α
(0)
1,m− j+1

� j c j

c j +1
·

k m

k[ j+1]
(53)

≤ 2 ·
�µ

2

�r

k m +

 

r−1
∑

j=1

�µ

2

� j

·1 ·
�

1

2

�r− j
!

k m (54)

(µ≥1)
≤

 

2
�µ

2

�r

+
r−1
∑

j=1

�µ

2

� j �µ

2

�r− j
!

k m (55)

=
�

2
�µ

2

�r

+ (r −1)
�µ

2

�r �

k m (56)

= (r +1)
�µ

2

�r

k m . (57)

If the modified switch-table method is called on m-element subsets, then the minimal
` in a reduction factor of level i is m − i + 1 and the maximal ` is m . Therefore, δi ,` ≤

δi ,m ≤
p

2−µ
2 implies α(1)i ,` = δ

2
i ,` ≤

2−µ
4 ≤

1
4 ≤

µ
4 . Moreover, µ4 <

1
2 ≤ 1 −

p
2−µ
2 ≤ 1 − δi ,` =
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δ̄i ,` ≤ δ̄i ,m−i+1 =
n−i+1−(m−i+1)

n−i+1 = n−m
n−i+1 . This implies µ(n−i+1)

4(n−m ) < 1, and, hence, `
Ç

µ(n−i+1)
4(n−m ) is

monotonically increasing in `.
With this, one can conclude for all `=m , m −1, . . . , m − i +1 and all i = 1, 2, . . . , r :

ci +1≥

�

1− m−i+1

√

√µ(n − i +1)
4(n −m )

�

(n − i +1) (58)

⇒ ci +1≥
�

1− `

√

√ µ

4 δ̄i ,`

�

(n − i +1) (59)

⇒ ci +1≥ (n − i +1)− (n − i +1) `
√

√ µ

4 δ̄i ,`

(60)

⇒
�

n − i +1− (ci +1)
n − i +1

�`

≤
µ

4 δ̄i ,`

(61)

⇒ δ̄i ,`

��

n − i +1− (ci +1)
�

`

(n − i +1)`

�

≤
µ

4
(62)

⇒α(0)i ,` = δ̄i ,`ϑi ,` ≤
µ

4
. (63)

The following result shows that if the reduction factors are not too much smaller than 1
2

and r is sufficiently smaller than m , then the switch table may even be slower than the naive
method.

Corollary 3. Let ST be a switch table for a subgroup G of Sn with maximal effective row r
and ci non-trivial switches in row i , i = 1, 2, . . . , r .

Assume that there is a µ ∈ (0,1] with α(1)i ,` ≥
µ
2 and α(0)i ,` ≥

µ
2 for all i = 1,2, . . . , r and ` =

m − r, m − r +1, . . . , m. Then, the relative effort κmst(m ) of ST is at least 3
2µ

r
�

1− r
m

�

, i.e.,

σmst(m )≥
3

2
µr
�

1−
r

m

�

k m =
3

2
µr
�

1−
r

m

�

σnve(m ). (64)

In particular, if additionally µ > r
q

2
3 and r < m

�

1− 2
3µr

�

, then the modified switch-table
method typically needs more single-element evaluations on m-element subsets than the naive
method.
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Proof. The starting point is again Corollary 1. The fact that cr > 0 implies cr
cr+1 ≥

1
2 . Therefore:

σmst(m )≥
�

1+
cr

cr +1

�

�

α(1)1,m−r+1+α
(0)
r,m

�r

k (m − r ) (65)

+
r−1
∑

j=1

�

α(1)1,m− j+1+α
(0)
j ,m

� j c j

c j +1
·

k (m − j +1)
k[ j+1]

(66)

≥
3

2
·µr ·2r ·

�

1

2

�r

k (m − r ) (67)

≥
3

2
µr k (m − r ) (68)

=
3

2
µr
�

1−
r

m

�

k m . (69)

The additional claim follows from solving 3
2µ

r
�

1− r
m

�

> 1.

Since the assumptions in both Corollaries 2 and 3 are somewhat unrealistic (uniformly
bounded reduction factors are rare in practice), the focus of the following is on bounds
that actually explain the difference in performance for important use cases, namely the
enumeration of circuits and triangulations of hypercubes.

A closer inspection of the non-element reduction factors reveals that the transitivity of a
symmetry group has a positive influence on the performance of the modified switch-table
method. An important example for this are the symmetry groups of hypercubes: for each
pair of vertices of the hypercube there is a permutation in its symmetry group that maps
one vertex to the other. Switch tables allow for a somewhat continuous measure for the
transitivity of a symmetry group: the level-i transitivity gaps. A switch table encodes a
transitive group if and only if n − (c1+1) = 0. If an m-element subset shall be checked for
lexicographic minimality in its orbit, then it is more relevant whether the level-1 transitivity
gap is zero. Such a zero-transitivity gap is already guaranteed whenever n−(c1+1)<m . This
immediately annihilates the 50 % branch weights of all branch-selection vectors starting
with a “0” and guarantees that the first reduction factor in the element branch is active for
all remaining branches. Similarly, if also the level-2 transitivity gap is zero, then another
25 % of branch weights disappears with an active second reduction factor of the element
branch, etc. The reduction factors in the element branch are particularly small if m is small
compared to n . The following corollary presents an analysis of the resulting relative effort
for level-1 transitivity gaps of zero.

Corollary 4. Let ST be a switch table for a subgroupG ofSn with maximal effective row r and
ci non-trivial switches in row i , i = 1, 2, . . . , r so that ϑ1,m = 0. This is, e.g., the case whenever
G is transitive. Denote by r ( j ) the number of effective rows with index strictly larger than j .

Define µ := n−1
n and assume that δ2

m ,r +µ
2 ≤ 1. Then:

κmst(m )≤
�

1+
r
∑

j=1

1

2r ( j )
·

c j

c j +1

�

δ2
1,m ≤ 3δ2

1,m . (70)
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Proof. First note that both δ̄i ,` ≤ µ and ϑi ,` ≤ µ, whence α(0)i ,` ≤ µ2 for all i = 1,2, . . . , r and
`= 1, 2, . . . , m . The assumptions and Lemma 6 guarantee that for a branch-selection vector
b=

�

1
b′

�

with b′ ∈B ( j −1) for j = 1, 2, . . . , r −1 its weight is bounded from above as follows:

w1,m (
�

1
b′

�

)≤δ2
1,m ·

�

δ2
r,m

�λ(b′) ·
�

µ2
�r−1−λ(b′)

. (71)

All branch-selection vectors with b1 = 0 have weight zero. Thus, the first sum in Remark 1
can be bounded as follows:

�

1+
cr

cr +1

� ∑

b∈B (r )

w1,m (b)vm (b)k (72)

≤ k
�

1+
cr

cr +1

�

α(1)1,m

∑

b′∈B (r−1)

w1,m (b
′)vm (b

′) (73)

≤ k m
�

1+
cr

cr +1

�

δ2
1,m

r−1
∑

λ=0

�

r −1

λ

�

�

δ2
r,m

�λ�
µ2
�r−1−λ

(74)

= k m
�

�

1+
cr

cr +1

�

δ2
1,m

�

δ2
r,m +µ

2
�r−1

�

(75)

≤ k m
�

�

1+
cr

cr +1

�

δ2
1,m

�

. (76)

For the second sum, k
k[ j+1]
≤ k

2r ( j ) for all j = 1, 2, . . . , r −1, since c j +1≥ 2 for all effective rows j .
Therefore:

r−1
∑

j=1

∑

b∈B ( j )

w1,m (b)vm (b)
c j

c j +1
·

k

k[ j+1]
(77)

≤ k α(1)1,m

r−1
∑

j=1

1

2r ( j )
·

c j

c j +1

∑

b′∈B ( j−1)

w1,m (b
′)vm (b

′) (78)

≤ k δ2
1,m

r−1
∑

j=1

1

2r ( j )
·

c j

c j +1

∑

b′∈B ( j−1)

w1,m (b
′)vm (b

′) (79)

≤ k m δ2
1,m

r−1
∑

j=1

1

2r ( j )
·

c j

c j +1

j−1
∑

λ=0

�

j −1

λ

�

�

δ2
r,m

�λ�
µ2
� j−1−λ

(80)

= k m δ2
1,m

r−1
∑

j=1

1

2r ( j )
·

c j

c j +1

�

δ2
r,m +µ

2
� j−1

(81)

= k m δ2
1,m

r−1
∑

j=1

1

2r ( j )
·

c j

c j +1
. (82)

In total:

σmst(m )≤ k m





�

1+
r
∑

j=1

1

2r ( j )
·

c j

c j +1

�

δ2
1,m



 . (83)
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This implies the assertion. For the simplified, weaker upper bound, note that
c j

c j+1 ≤ 1 for

each effective row j and
c j

c j+1 = 0 for each trivial row j . Therefore, for s effective rows a
restriction of the sum to effective row indices, reversing the summation, and extension to
the infinite series yields the claim as follows:

r
∑

j=1

1

2r ( j )
·

c j

c j +1
≤

s
∑

j=1

1

2s− j
=

s−1
∑

j=0

1

2 j
≤
∞
∑

j=0

1

2 j
= 2. (84)

Example 2. Consider the point configuration consisting of the set of vertices of the d -
dimensional hypercube Cd . It has n = 2d points and a transitive symmetry group of or-
der d !2d , generated by all permutations of coordinates and a 0/1-flip of an arbitrary coor-
dinate. If one is interested, e.g., in the circuits (see Section 8) of Cd , then all subsets to be
considered contain at least 4 and at most m = d +2 points. Consider an order of the points
so that, recursively, Cd =

�

Cd−1 Cd−1
0 1

�

in non-homogeneous coordinates or with a row of ones
at the top in homogeneous coordinates. Then

Cd =





Cd−2 Cd−2 Cd−2 Cd−2

0 1 0 1
0 0 1 1



 (85)

There is exactly one symmetry that point-wise stabilizes the first 2d−2 columns, namely
flipping the last two coordinates. Similarly, flipping either of the last two coordinates with
the third-to-last coordinate yields exactly two symmetries that stabilize the first 2d−3 columns
from the left, and so on. For d = 6 this yields 1, 2, 3, 4, 5 non-trivial switches in rows 17,
9, 5, 3, 2, respectively, and 63 non-trivial switches in row 1 (because of transitivity). Since
k = 46,080 = 2 · 3 · 4 · 5 · 6 · 64, there are no further non-trivial switches. Therefore, r = 17.
Moreover, for m = 8, one obtains δ1,m =

8
64 =

1
8 , δr,m =

8
48 =

1
6 , and µ = 63

64 . Therefore,

δ2
r,m +µ

2 = 1
62 + 632

642 ≤ 1. With this, Corollary 4 yields:

κmst(8)≤
�

1+
1

1
·

1

2
+

1

2
·

2

3
+

1

4
·

3

4
+

1

8
·

4

5
+

1

16
·

5

6
+

1

32
·

63

64

�

�

·
1

64
(86)

< 0.035. (87)

Hence, the modified switch-table method for the lex-min checks for 8-element subsets in the
6-cube (relevant for circuits) typically needs less than 3.5 % of the effort of the naive method.
The simplified upper bound (which does not need the detailed data of the switch table)
still yields κmst(8) ≤ 3

64 < 0.047. Compare this to the relative effort of the iteration-based
critical-element method, which, by Theorem 1, is always n+m−1

nm , in this case 71
512 > 13.8 %. So,

it can be assumed a-priori that for 8-element subsets in the 6-cube the modified switch-
table method will be typically at least almost four times as fast (in terms of single-element
evaluations) as the critical-element method. The superiority in terms of single-element
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evaluations of the modified switch-table method in the enumeration of circuits in the 6-cube
(see Table 1) is much more pronounced: First, Corollary 4 is not very tight in order to arrive
at a simpler formula. Second, during the enumeration most checks run on subsets with
fewer than 8 elements (some circuits have fewer elements, and the enumeration has to
check at least all lex-subsets of circuits), which reduces the speed-up of the critical-element
method. Third, in this example m < r , so that all branch-selection vectors with more than m
one-components lead to summands that are zero (which was ignored in the estimates above,
since taking this into account leads to ugly binomial tails). The superiority of the modified
switch-table method in terms of CPU times is much less apparent. This can be attributed to
the fact that the modified switch-table method incurs a larger effort for the adminstration of
local data structures and the recursion compared to the structurally simple, purely iterative
critical-element method. In particular, in the critical-element method many single-element
evaluations are only read-outs from a consecutive array while in the modified switch-table
method many single-element evaluations are used to generate new subsets, incurring a
memory management overhead.

It may seem that the modified switch-table method should be the superior method in
most cases. However, in the following it is shown that for large degrees and small orders so
that the non-trivial elements in the switch table are extremely sparse the critical-element
method can be substantially better.

Corollary 5. Let ST be a switch table for a subgroup G of Sn with maximal effective row r
and ci non-trivial switches in row i , i = 1, 2, . . . , r .

Assume that there is a µ ∈ (0, 1) such that

• m ≤µ(n − r +1)

• ci +1≤µ(n − i +1−m +1) for all i = 1, 2, . . . , r .

Then, the relative effort κmst(m ) of ST is at least 3
2 (1−µ)r (m+1), i.e.,

σmst(m )≥
3

2
(1−µ)r (m+1)k m . (88)

Proof. First, note that m ≤ µ(n − r + 1) implies δ̄i ,` ≥ δ̄r,m ≥ (1− µ). Moreover, ci + 1 ≤
µ(n − i +1−m +1) implies ϑi ,` ≥ ϑi ,m ≥ (1−µ)m .

The starting point for the lower bound is now again Remark 1, where all branch-selection
vectors are ignored except the zero vector. Moreover, since ci might be zero for i = 2, 3, . . . , r −
1 only the expressions with branch-selection vectors of length r are taken into account.
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With this one obtains:

σmst(m )≥
�

1+
cr

cr +1

�

w1,m (0)vm (0) (89)

≥ k m
�

1+
cr

cr +1

�

r
∏

t=1

α(0)t ,m (90)

≥ k m
�

1+
cr

cr +1

�

r
∏

t=1

(δ̄t ,m ϑt ,m ) (91)

≥ k m
�

1+
cr

cr +1

��

(1−µ)(1−µ)m
�r

(92)

≥ k m
3

2

�

(1−µ)(1−µ)m
�r

(93)

≥
3

2
(1−µ)r (m+1)k m . (94)

Thus, for a very smallµ it may happen that the exponential speed-up in r of the modified
switch-table method is outperformed by the linear speed-up in m of the critical-element
method. For the enumeration of triangulations this is the case in all instances computed in
this paper. More specifically: The result explains why for triangulations of the 4-cube, the
critical-element method is faster, as is shown in the following example.

Example 3. Consider the point configuration consisting of the set of vertices of the d -
dimensional hypercube Cd , in particular for d = 4. If one is interested, e.g., in triangulations
(see Section 9), then the relevant action of its symmetry group of order k = 384 is the action
on the full-dimensional simplices. Concrete computer calculations show the following.
There are 3008 such simplices. Thus, the degree here is n = 3008. Note that 384 < 3008
already implies that the symmetry group is not acting transitively on simplices. Moreover,
for the order of points as in Example 2 and the lexicographic order on simplices a switch
table has r = 3 with c1 = 15, c2 = 11, and c3 = cr = 1. Finally, triangulations of C4 have
between 16 and 24 simplices. Corollary 5 can, therefore, be applied to this particular switch
table, e.g., with µ= 1

100 . Then, in the best-case m = 24 for the modified switch-table method
one obtains:

κmst(24)≥
3

2

�

99

100

�3·25

> 70 %. (95)

In contrast to this, in the worst-case m = 16 for the iteration-based critical-element method
one obtains:

κcet(16)≤
3008+16−1

3008 ·16
< 7 %. (96)

Thus, for triangulations one can a-priori guarantee that for the lex-min check on 16- to
24-element subsets of simplices in the 4-cube the critical-element method will typically be
at least 10 times as fast (in terms of single-element evaluations) as the modified switch-table
method. Again, in Table 1 it can be seen that inside the enumeration of triangulations of

43



the 4-cube the critical-element method is only slightly more than 3 times as fast (in terms
of single-element evaluations) as the modified switch-table method, because of the many
checks of smaller subsets of triangulations. As before, in terms of CPU times the superiority
of the critical-element method is more pronounced, probably because of its overall simpler
implementation structure.

So far, a switch table was considered given, and the input subsets were considered
random. Now, a switch table on a random k -subset G of permutations is discussed. The
suitable probability space for this is (Ω, 2Ω,P[·]), where Ω is the set of all k -subsets P ∈

�

Sn
k

�

of

permutations π ∈Sn with |Ω|=
�

n !
k

�

and P[P ] = 1
|Ω| for all P ∈

�

Sn
k

�

.
Motivated by the applications in this paper (see the examples in Sections 7 through 9),

the focus in the following is on orders k that are much smaller than the number n ! of all
permutations in Sn . For these cases, a binomial approximation is added based on sampling
k permutations uniformly and independently at random with replacement to generate a
sequence of k (not necessarily distinct) permutations, which simplifies formulas.

Theorem 3. Let G be a k -subset of permutations in Sn that has been chosen uniformly at
random from all such k -subsets. Then, the typical number ci of non-trivial switches in row i
for i = 1, 2, . . . , n is given by

E[ci ] = (n − i )

�

1−
k−1
∏

t=0

�

1−
(n − i )!
n !− t

�

�

(97)

If k is sufficiently smaller than n !, then a binomial approximation of this is given as
follows: Let G be a random sequence of k permutations in Sn , where each permutation has
been chosen uniformly and independently at random with replacement. Then, the typical
number ci of non-trivial switches in row i for i = 1, 2, . . . , n is given by

E[ci ] = (n − i )

�

1−
�

1−
1

(n )i

�k
�

. (98)

Proof. Call Ai ( j ) the set of all permutations π ∈Sn that stabilize 1,2, . . . , i − 1 and map a
given j > i to i . Since for permutations in Ai ( j ) exactly i images are fixed and the others are
arbitrary, there are (n − i )! permutations in Ai ( j ). The number of k -subsets of permutations
that contain no permutation in Ai ( j ) is, therefore,

�

n !−(n−i )!
k

�

. LetCi ( j ) be the event containing
those k -subsets of permutations for which row i and column j in a switch table of G is
non-trivial. The cardinality of Ci ( j ) is

�

n !
k

�

−
�

n !−(n−i )!
k

�

. Hence, the probability P[Ci ( j )] that
row i and column j of a switch table for a random k -subset of permutations is non-trivial
can be computed as follows.

P[Ci ( j )] =

�

n !
k

�

−
�

n !−(n−i )!
k

�

�

n !
k

� (99)

= 1−

�

n !−(n−i )!
k

�

�

n !
k

� (100)
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= 1−

�

n !− (n − i )!
�

k

(n !)k
(101)

= 1−
k−1
∏

t=0

n !− (n − i )!− t

n !− t
(102)

= 1−
k−1
∏

t=0

(n !− t )− (n − i )!
n !− t

(103)

= 1−
k−1
∏

t=0

�

1−
(n − i )!
n !− t

�

(104)

(105)

Using the indicator variable 1Ci ( j ) ofCi ( j ) and the linearity of expectation, the typical number
of non-trivial switches E[ci ] in row i of a switch-table for G is given by

E[ci ] =
n
∑

j=i+1

E[1Ci ( j )] =
n
∑

j=i+1

P[Ci ( j )] = (n − i )

�

1−
k−1
∏

t=0

�

1−
(n − i )!
n !− t

�

�

. (106)

This equals the first assertion. If k is sufficiently smaller than n !, then the k factors in the
product are all approximately equal to 1− (n−i )!

n ! = 1− 1
(n )i

, which yields the assertation about
the binomial approximation.

The formula shows that for small orders k and large degrees n there are typically only
very few non-trivial switches in rows i > 1, which leads to large level-i transitivity gaps and,
therefore, a smaller performance gain of a switch table.

For the following bound on the maximal effective row the considerations are based on
the binomial approximation. It shows that in the absence of special structure the maximal
effective row r is usually small when the degree n is large compared to the order k of the
symmetry group. Of course, in such cases k is, in particular, much smaller than n !, so that a
binomial approximation is justified. Recall that for a small r the linear overhead of a switch
table may outweigh the exponential gain; therefore, this is an important finding.

Theorem 4. The typical maximal effective row r of a switch table for a sequence of k per-
mutations of degree n chosen uniformly and independently at random with replacement is
at most 1+ 2k

n . In particular, whenever the degree is at least twice the order, then the typical
maximal effective row r is at most two.

Note that a group may have special structure leading to more effective rows in a switch
table. The claim is about the hyper-amortized average for k � n ! only and provides a hint
what to expect.

Proof. Call a random permutation i -non-trivial for i = 2, . . . , n if it could be chosen as a non-
trivial switch in row i or larger of a switch table. Note that the probability P[π i -non-trivial]
is given by the probability that π stabilizes 1, 2, . . . , i −1, which yields

P[π i -non-trivial] =
1

n (n −1) · · · (n − i +2)
. (107)
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Moreover, the number bi of i -non-trivial permutations is typicallyE[bi ] = kP[π i -non-trivial]
(approximation by the expectation in a binomial distribution). The maximal effective row r
is at least i if and only if there is at least one i -non-trivial permutation. Consequently:

E[bi ] =
k
∑

j=0

jP[bi = j ]≥
k
∑

j=1

P[bi = j ] =P[bi ≥ 1] =P[r ≥ i ]. (108)

This leads to the following estimate:

E[r ] =
n
∑

i=1

iP[r = i ] (109)

=
n
∑

i=1

P[r ≥ i ] (110)

= 1+
n
∑

i=2

P[r ≥ i ] (111)

≤ 1+
n
∑

i=2

E[bi ] (112)

= 1+
n
∑

i=2

kP[π i -non-trivial] (113)

= 1+k
n
∑

i=2

1

n (n −1) · · · (n − i +2)
(114)

= 1+
k

n
+

k

n

n
∑

i=3

1

(n −1) · · · (n − i +2)
(115)

≤ 1+
k

n

n
∑

i=2

�

1

2

�i−2

(116)

= 1+
k

n

n−2
∑

i=0

�

1

2

�i

(117)

≤ 1+
2k

n
. (118)

For the special case n ≥ 2k , consequently, E[r ]≤ 2.

The key learning of the previous theorems beyond the complicated formulas is that the
typical efficiency of the modified switch-table method becomes better (ceteris paribus) as
the order increases compared to the degree, and vice versa.

The analysis is qualitatively confirmed by the computational experiments for the appli-
cations in this paper. Table 1 shows for the circuits of the 6-cube C6 and the triangulations of
the 4-cube C4 the qualitative consistency of Corollaries 4 and 5 with computational experi-
ence single-threaded on an M1Max machine (for details on the computational environment
see Section 6).
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comput. n k r m CPU time [s] # realized single-element evaluations
cei ces mst cei ces mst

C6 circuits 64 46,080 17 4–8 14 7 3 4,259,939,467 498,266,262 50,735,629
C4 triang’s 3008 384 3 16–24 5 - 32 796,884,547 - 2,673,110,644

Table 1: Spot-light comparison of methods for lex-min checks cei= “critical-element method
via iteration”, ces = “critical-element method via sets”, and mst = “modified switch-table
method” (single-threaded)

Remark 2. The analysis in this section neglects the necessary memory-management over-
head for non-trivial temporary local data-structures for subsets. In TOPCOM, e.g., this over-
head – which in naive implementations can dominate anything else – is more prevalent in
the modified switch-table method than in the critical-element method.

4.3 Parallelization

The enumeration of trees is much easier to parallelize than general enumeration, since the
enumerations of distinct subtrees do not influence each other.

How to explore reverse-search trees in parallel using multiple processes with only little
inter-process communication was proposed in [3]. The core idea is budgeted load balancing.
That means, a coordinating process assigns to each worker process the root of a subtree
and a limited budget of nodes to enumerate in that subtree. The enumeration results in
that subtree roots are stored with the worker process. After the completion of its budget,
the worker process returns the control to the coordinating process, which in turn merges
the results from the worker process, including any unprocessed nodes in the subtree, to the
results obtained so far. The coordinating process then assigns to each idle worker process
a new subtree root and a new budget. Note that, because of independent enumerations
in each subtree, there can be no guarantee anymore for the order in which the objects of
interest are output. However, the “is-canonical” check implemented via the lex-min check
in SymLexSubsetRS remains correct since lex-minimality and, thus, canonicalicity does not
depend on when a subset orbit was found for the first time.

The big advantage of tree-based parallelization is that such a parallelization scheme
can carry out the actual enumeration and the merge of each worker’s results completely
lock-free. (The experience with various load-balancing mechanisms shows that a lock-
free implementation is the single most important success factor for fast parallelizations of
enumeration algorithms like the ones in this paper.)

TOPCOM uses a modified version of this paradigm using a lean shared memory for multiple
threads in one process instead of multiple processes: the coordinating thread updates a
count of currently unassigned subtree roots. Each worker thread reads out this count after
each discovery of a new node. If the count falls below the number of worker threads (a
threshold that can be configured), the worker thread stops and returns its results – including
the unprocessed nodes in the subtree – as well as the control to the coordinating thread.
The read-out of the count can be done lock-free because it does not matter at which node
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exactly the worker thread interrupts.
In TOPCOM the new method is called workbuffer control. It was used throughout the

computational experiments. The advantage of workbuffer control compared to budgeted
load balancing is that the number of unprocessed subtree roots (which must be stored in
the coordinating process) turns out to be much smaller for large problems. Moreover, the
worker processes usually stop less often unnecessarily this way. The cpu times of budgeted
load balancing versus workbuffer control did not show any significant differences in the
examples of this paper.

5 Applications: Common Preliminaries

In this section, some basic notions and notation are summarized for the common setup of
the applications presented in the upcoming sections.

Consider a point or vector configuration of rank r with n points or vectors. It is rep-
resented by an r ×n-matrix A containing the coordinates a1, . . . , an ∈Rr of the points (as
homogeneous coordinates) or vectors as columns. The number c := n − r is the corank of A.
For a subset S of column indices of A denote by A∗,S the submatrix consisting of the columns
with increasing indices in S . Moreover, for a matrix M in column-echelon form denote by
MNZ its submatrix of non-zero columns.

The usual language of linear algebra can be adapted to subsets of indices as follows.

Definition 9. A subset B ∈ [n ] is spanning if rank(A∗,B ) = r , otherwise it is not-spanning
or coplanar. A coplanar subset B with rank B = r − 1 is hyperplanar. It is independent
if rank(A∗,B ) = |B |, otherwise it is dependent. A basis is an independent spanning subset.
A simplex (in the context of triangulations) is a basis S such that cone(A∗,S ) is a pointed
polyhedral cone, i.e., the origin is a vertex of it. An r − 1-subset of a simplex is a simplex
facet or simply a facet whenever no confusion with facets of A can arise.

The first application deals with cocircuits, which can be seen as hyperplanes spanned
by the configuration.

Definition 10. Any inclusion-maximal coplanar subset C ∗0 of column indices of the configu-
ration A is called (the zero part of) a cocircuit. A cocircuit signature of C ∗0 is a mapσ∗ : [n ]→
{−, 0,+}with C ∗0 =σ

−1({0}) so that there is a c ∈Rr with cT ai = 0 for all i ∈ (σ∗)−1({0}), cT ai > 0
for all i ∈ (σ∗)−1({+}), and cT ai < 0 for all i ∈ (σ∗)−1({−}). Here, C ∗+ := (σ∗)−1({+}) is called the
positive part, and C ∗− := (σ∗)−1({−}) is called the negative part of the cocircuit signatureσ∗.
By elementary linear algebra, there are exactly two opposite cocircuit signatures of C ∗0 . More-
over, these two signatures are uniquely determined by any hyperplanar subset of C ∗0 . The
pair (C ∗+, C ∗−) is a signed cocircuit.

Intuitively, a cocircuit is the subset of all elements lying on a hyperplane spanned by
some of the elements in A. Counting all cocircuits is, therefore, the same as counting all
hyperplanes spanned by elements of the configuration.

Another application is concerned with circuits, which can be seen as unique intersection
points of subpolytopes spanned by the configuration.
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Definition 11. Any inclusion-minimal dependent subset C of the column indices of A is
(the support of) a circuit. A circuit signature of a circuit C is a mapσ : [n ]→{−, 0,+} so that
C =σ−1({−,+}) and

∑

i∈σ−1({+})λi ai =
∑

i∈σ−1({−})λi ai for suitable λi > 0, i = 1,2, . . . , n . Here,
C+ :=σ−1({+}) is called the positive part, C− :=σ−1({−}) the negative part, and C0 :=σ−1({0})
the zero-part of the circuit signatureσ. By elementary linear algebra, there are exactly two
opposite circuit signatures of C . The pair (C+, C−) is a signed circuit.

Symmetries of a configuration are the (co-)circuit-maintaining permutations of ele-
ments.

Definition 12. A permutation π ∈Sn is a (combinatorial) symmetry of A, if the following
holds for each pair (S , R ) of subsets of [n ]: (S , R ) is a signed cocircuit of A if and only if
�

π(S ),π(R )
�

is a signed cocircuit of A, or, equivalently, (S , R ) is a signed circuit of A if and

only if
�

π(S ),π(R )
�

is a signed circuit of A. A symmetry is affine if it is induced by an affine
isomorphism f : aff(A)→ aff(A) via π(i ) = j if and only if f (ai ) = a j . The (combinatorial)
symmetry group Aut(A) =Autcomb(A) of A is the group of all (combinatorial) symmetries of A.
The affine symmetry group Autaff(A) is the group of all affine symmetries.

By this definition, it makes sense to enumerate all (co-)circuits of A up to (combinatorial)
symmetry.

The third application in this paper deals with triangulations of A. It is advantageous to
use a well-known characterization of triangulations of point configurations as the definition
[8, Cor. 4.1.32]. In the context of triangulations, bases are usually called simplices.

Definition 13. Two simplices S1 and S2 are intersecting properly if there is no signed circuit
C with C+ ⊆ S1 and C− ⊆ S2. A simplex facet F is interior if there is a cocircuit C ∗0 with F ⊆C ∗0
so that C ∗+ and C ∗− are both non-empty. A non-empty subset T of simplices is covering if for
each interior facet F of some simplex S ∈T there is another simplex S ′ ∈T containing F . A
triangulation is a non-empty covering subset T of pairwise properly intersecting simplices.

Proper intersection of two simplices S1 and S2 roughly means geometrically that the
convex hulls conv A∗,S1

and conv A∗,S2
intersect in a common (possibly empty) face of both.

The covering property together with proper intersection roughly means geometrically that
all facets of a simplex in T interior in A are covered by simplices from boths sides in T .

Whether or not a subset of simplices of A is a triangulation depends only on the combi-
natorics of A as given by its set of (co-)circuits [8, Thm. 4.1.31]. Therefore:

Lemma 7. For any combinatorial symmetry π of A and any subset T of [n ] one has that T
indexes a triangulation of A if and only if the set π(T ) indexes a triangulation of A.

By this lemma, it makes sense to enumerate all triangulations of A up to (combinatorial)
symmetry. Note that additional restrictions on the triangulations to be enumerated (like
regularity or unimodularity) can break this property. In that case, the symmetries have
to be restricted to such symmetries that maintain the required structures imposed on the
triangulations to be enumerated. To enumerate regular triangulations up to symmetry
the symmetries have to be restricted to affine symmetries (maintaining the convexity of
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liftings), and for the enumeration of unimodular triangulations the symmetries have to be
restricted to isometric symmetries (maintaining the volumes of simplices). In Section 9.4
further examples for interesting restrictions can be found that require a restriction of the
combinatorial symmetries of A to a smaller subgroup.

A dimension # points # symmetries

C5 5 32 38,040
C6 6 64 46,080
C7 7 128 645,120
C8 8 256 10,321,920
C9 9 512 185,794,560

∆(8, 3) 7 56 40,320
∆(8, 4) 7 70 40,320
∆(9, 3) 8 84 362,880
∆(9, 4) 8 126 362,880
∆(10, 3) 9 120 3,628,800
∆(10, 4) 9 210 3,628,800
∆(10, 5) 9 252 3,628,800

Table 2: Parameters of the configurations for the enumeration of (co-)circuits

In the computational results, the following point configurations are mentioned. Since
some results depend on the order of points, we also mention the order used in this paper.
The homogenization of coordinates is not explicitly mentioned in the following:

• The d -dimensional point configuration Cd is the d -dimensional hypercube. The 2d

points are ordered in this paper such that Cd =
�

Cd−1 Cd−1
0 1

�

with C0 := () (which can be
interpreted as the only point in R0).

• The n + n ′-dimensional point configuration ∆n×∆n ′ is the product of simplices of
dimensions n and n ′. The (n + 1)(n ′+ 1) points are ordered in this paper such that
∆n×∆n ′ =

�

In+1 In+1 ... In+1
e1 e2 ... en ′+1

�

.

• The d -dimensional point configuration∆(d , k ) is the d -dimensional hypersimplex
with coordinate sum k . The points are ordered lexicographically in this paper.

• The d -dimensional point configuration k∆d is the dilated simplex in dimension d with
dilation factor k ; it may have interior points. The points are ordered lexicographically
in this paper. The number of subregular/regular/unimodular triangulations of 3∆3

were computed for the first time in [14]with the help of high-performance computing
with mptopcom – the largest number of triangulations computed at that time.

• The d -dimensional point configuration C(n , d ) is the d -dimensional cyclic polytope
with n vertices. The points are ordered in this paper with increasing first coordinate.

• The 3-dimensional point configurations icosahedron and dodecahedron consist of the
vertices of the regular polytopes corresponding to the respective Platonic solids with
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A dimension # points # symmetries

C4 4 16 384

∆(6, 3) 5 20 1440
∆(7, 2) 6 21 5040

∆6×∆2 8 21 30,240
∆4×∆3 7 20 2880
∆5×∆3 8 24 17,280
∆4×∆4 8 25 28,800

3∆3 3 20 24
4∆3 3 35 24
3∆4 4 35 120

icosahedron 3 12 120
pseudo-icosahedron 3 12 24
dodecahedron 3 20 120
pyritohedron 3 20 24

P(A2) 2 7 12
P(A3) 3 13 48
P(A4) 4 21 240
P(A5) 5 31 1440

C(n , 2k ) 2k n 2n
C(n , 2k −1) 2k −1 n 2

Table 3: Parameters of the configurations for the enumeration of triangulations

12 and 20 vertices, respectively. There are no rational coordinates for them, but all
their (co-)circuits can still be computed exactly using algebraic field extensions. There
are no results in this paper that depend on the order of points.

• The 3-dimensional point configuration pseudo-icosahedron consists of the vertices
of an approximation of the regular icosahedron by rational coordinates generated by
ratios of Fibonacci-numbers approximating the golden ratio. In this paper, the exact
coordinates are chosen and ordered as follows:

�

0 0 21 −21 13 −13 13 −13 21 −21 0 0
21 21 13 13 0 0 0 0 −13 −13 −21 −21
13 −13 0 0 21 21 −21 −21 0 0 13 −13

�

• The 3-dimensional point configuration pyritohedron consists of the vertices of a
pseudo-dodecahedron in the same sense known from cristallography. In this paper,
the exact coordinates are chosen and ordered as follows:

�

−1 1 −1 −1 0 −3/4 −3/2 0 −3/4 3/2 −3/2 3/4 0 3/2 3/4 0 1 1 −1 1
−1 −1 −1 1 −3/4 −3/2 0 −3/4 3/2 0 0 −3/2 3/4 0 3/2 3/4 −1 1 1 1
−1 −1 1 −1 −3/2 0 −3/4 3/2 0 −3/4 3/4 0 −3/2 3/4 0 3/2 1 −1 1 1

�

• The n-dimensional full root polytope consists of the vertices of the n-polytope P(An ) =
conv{e j − ei : 1≤ i , j ≤ n +1} ⊂Rn+1 in ambient n +1-space together with the origin.
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The points are ordered in this paper as (e j − ei , ei − e j ) for (i , j ) ordered lexicographi-
cally and transformed to full rank by Gaussian elimination. Of particular interest are
the numbers of central triangulations of full root polytopes, i.e., the ones in which
each simplex contains the origin. For details about the enumeration of triangula-
tions, see Section 9. In [16] these numbers are computed up to P(A4) to classify the
combinatorial types of polytropes. This classification was achieved earlier in [31] via
Gröbner fans. Among the central triangulations of full root polytopes, the centrally
symmetric ones have attracted recent attention as well. No results have been pub-
lished so far about P(A5). The new TOPCOM enumeration results for the number of
central and centrally symmetric triangulations of P(A5) presented in Section 9.4 have
meanwhile been utilized for the classification of certain finite metrics in [9], where
also the relevance of these numbers is explained.

6 Applications: Computational Environment

For all computational tests a C++-implementation in TOPCOM beta-version 1.2.0b was used.
See [25] for a paper on an earlier version of TOPCOM.

The computer is an Intel(R) Xeon(R) CPU E5-2690, 2.90GHz (384 GB RAM) with 2 sock-
ets of 8 cores each and two virtual threads per core. The operating system was Ubuntu Linux
5.4.0-172-generic with the C++compiler from gcc version 9.4.0 (Ubuntu 9.4.0-1ubuntu1 20.04.2).
Unless state otherwise, for each run 16 threads were used on an otherwise idle machine
since hyper-threading has no advantages for computationally demanding tasks.

For some computations, also an Apple MacBookPro (2021) was used with M1Max (64 GB
RAM) with 8 performance cores and 2 efficiency cores. The operating systems ranged over
the time of the experiments from MacOSX Sonoma 14.5 (23F79) with the C++-compiler
Apple clang version 15.0.0 (clang-1500.3.9.4) through MacOSX Sequoia 15.6.1
with the C++-compiler Apple clang version 17.0.0 (clang-1700.4.4.1). Unless stated
otherwise, this computer was run with 8 threads. Computational results achieved with this
computer are marked with “M1Max”.

No multiple runs were executed for the experiments in this paper, since for the larger
instances this simply would have taken too much time. Therefore, the cpu times could vary
a little. Since the cpu times in this paper are several times faster than for any earlier effort,
this does not affect the relevance of the results.

7 Application I: Cocircuits

In this section it is shown how all cocircuits of a point configuration A can be enumerated up
to symmetry by exploring the downsetD of all coplanar subsets using SymLexSubsetRSMax_withData
(Algorithm 8).
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7.1 Specializations

In order to make the application of SymLexSubsetRSMax_withData explicit, its subroutines
IsInDownset, SemiIsNotRightComp, IsInEachMax, and IsMaxInDownset must be formally
specified. Recall that in these subroutines one can utilize global data (preprocessed prior
to the enumeration) and local data (updated in each enumeration node) to speed up the
computations and avoid duplicate work.

In this particular case, the local data L consists of a matrix M that is a column-echelon
form of AS . It can be computed by Gaussian elimination on columns from left to right.
Storing it allows us to avoid the repetition of identical eliminations in matrices with identical
initial segments of columns. The local data of the node of a subset S ′ with S = S ′ \maxS ′ is
initialized as the augmented matrix (M, A∗,maxS ′). The global data used is the full matrix A.

Algorithm: IsInDownset(S ′,D, A,M,M′)

Input: A subset S ′ of column indices of A, the downsetD of coplanar subsets, the
configuration A, a column-echelon form M of A∗,S ′\maxS ′ , and the augmented matrix
M′ = (M, A∗,maxS ′ ) (not yet in column-echelon form, in general)

Output: (TRUE,M′)with M′ a column-echelon form of A∗,S ′ if rank(M′)≤ r −1 and (FALSE,M′)
otherwise

M′← colechForm(M′) ; /* compute column-echelon form */
if |S ′|< r or M′∗,r = 0 then /* if at most r −1 non-zero columns */

return (TRUE,M′) ; /* S is coplanar */

else
return (FALSE,M′) ; /* S is spanning */

Algorithm 14: Check whether a subset of columns is coplanar

The implementation of SemiIsNotRightComp in Algorithm 15 is based on the following
theorem.

Theorem 5. Let S be right-completable to (the zero-set of) a cocircuit C ∗0 of A. Then:

(i) For the set R := {i ∈ [n ] : i >maxS} the rank bound rank(A∗,S∪R )≥ r −1 holds.

(ii) For all i ∈ [n ] \S with i <maxS the rank bound rank(A∗,S )< rank(A∗,S∪{i }) holds.

Proof. For item (i) assume that S is right-completable to a maximal and, thus, maximally
hyperplanar subset S ′ with rank(A∗,S∪R )< r −1. Then, since S ′ \S ⊆R , we have rank(A∗,S ′)<
r −1, contradicting the fact that S ′ is hyperplanar.

For item (ii) assume there is an i ∈ [n ]\S with i <maxS so that rank(A∗,S ) = rank(A∗,S∪{i }),
and assume there is a maximal hyperplanar subset S ′ that is a right-completion of S . Then,
i is not in S ′, and rank(A∗,S ′∪{i }) = rank

�

A∗,(S ′\S )∪(S∪{i })
�

= rank
�

A∗,(S ′\S )∪S

�

= rank(A∗,S ′), contra-
dicting the maximality of S ′.

Call the use of the semi-check based on this theorem rank-pruning; skipping this semi-
check is called no-pruning for later reference. Moreover, call the setDnonprunable of subsets
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Algorithm: SemiIsNotRightComp(S ′,D, A,M,M′)

Input: A coplanar subset S ′ of column indices of A, the downsetD of coplanar subsets, the
configuration A, a column-echelon form M of A∗,S ′\maxS ′ , and a column-echelon form
M′ of the augmented matrix A∗,S ′

Output: (TRUE,M′) if S ′ cannot be right-completed and (FALSE,M′) otherwise
r ′← rank(M′) ; /* get current rank */
for i = 1, . . . , maxS ′−1 with i /∈ S ′ do /* traverse left non-elements */

M′′← colechForm(M′, ai ) ; /* compute column-echelon form */
if M′′∗,r ′+1 = 0 then /* if column i is in the current span */

return (TRUE,M′) ; /* S ′ not right-completable */

if r ′ < r −1 then /* if rank not yet sufficient */
M′′←M′ ; /* prepare a rank-increase checker matrix */
r ′′← r ′ ; /* keep track of rank increase */
for i =maxS ′+1, . . . , n do /* traverse right non-elements */

M′′← colechForm(M′′, ai ) ; /* compute column-echelon form */
if M′′∗,r ′′+1 6= 0 then /* if i increases rank */

r ′′← r ′′+1 ; /* update rank increase */
if r ′′ = r −1 then /* if rank increase sufficient */

return (FALSE,M′) ; /* S ′ might be right-completable */

else if r ′′+n − i < r −1 then /* if target rank unreachable */
return (TRUE,M′) ; /* S ′ not right-completable */

return (FALSE,M′) ; /* S ′ might be right-completable */

Algorithm 15: The rank-pruning semi-check whether a coplanar subset of columns
is right-completable based on a direct application of Theorem 5

inD for which rank-pruning returns “FALSE” the non-prunable subsets. In Table 4 the node
counts for no-pruning and rank-pruning are compared for tiny to small examples.

In order to find out whether an expansion is in each maximal superset, one can use a
similar observation: any element that does not increase the rank of the current subset can
be added to each rank-(r − 1) superset thereof without increasing the rank. Thus, it is in
each maximal superset. The pseudo-code is listed in Algorithm 16. All data necessary for
this check have been computed before. Thus, this check is very fast, and there is no point in
skipping it.

In order to implement the maximality check one can utilize a signature corresponding
to a hyperplanar subset, which must be computed anyway. This can be done as follows.

Lemma 8. Let S be a hyperplanar subset and let B be the r × (r − 1)-matrix of non-zero-
columns of a column-echelon form of A∗,S . Then, there is a unique cocircuit C ∗0 containing S.
Moreover, one of the two opposite signatures of C ∗0 is given by

σ∗S (i ) = sign
�

det(B, ai )
�

. (119)
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A # cocircuits # nodes by pruning method CPU time [s] by pruning method
in total no rank no rank

C5 3254 1,026,636 78,050 13.62 3.37
∆4×∆4 460 2,018,570 87,440 37.52 5.36
∆(8, 2) 1661 3,133,114 131,007 50.88 6.60

Table 4: Comparison of no-pruning versus rank-pruning on tiny to small examples (single-
threaded, symmetries ignored)

Algorithm: IsInEachMax(S ′,D, A,M,M′)

Input: A subset S ′ of column indices of A, the downsetD of coplanar subsets, the
configuration A, a column-echelon form M of A∗,S ′\maxS ′ , and a column-echelon form
M′ of the augmented matrix A∗,S ′

Output: (TRUE,M′) if each maximal superset of S contains S ′ and (FALSE,M′) otherwise
if rank(M′) = rank(M) then /* S ′ did not increase rank */

return (TRUE,M′) ;

else
return (FALSE,M′) ;

Algorithm 16: Check whether the expansion from S to S ′ is in each maximal superset
of S ; the local data M′ remains unchanged

In particular, S is maximal and, thus, a cocircuit if and only if det(B, ai ) 6= 0 for all i ∈ [n ]\S.

Proof. The assertion follows from the fact that the right-hand side is the sign of a linear form
in a1, . . . , ar that vanishes on all points in A∗,S , which was assumed to be hyperplanar.

That is, whenever during the enumeration a right-maximal hyperplanar subset is reached,
the first r −1 non-zero columns MNZ of the corresponding matrix in the local data determine
the signature of the unique cocircuit containing it.

Algorithm: IsMaxInDownset(S ,D, A,M)

Input: A subset S of column indices of A, the downsetD of coplanar subsets, the
configuration A, and a column-echelon form M of A∗,S

Output: TRUE if S is maximal inD and FALSE otherwise
for i ∈ [n ] \S do /* for all elements outside S */

if det(MNZ , ai ) = 0 then /* if the signature of i is zero */
return FALSE ; /* S is not maximal */

return TRUE;

Algorithm 17: Check whether a subset of columns is maximally coplanar
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7.2 Analysis

The following can be said about the efficiency of this algorithm.

Theorem 6. Assume that the critical-element method is used for IsLexMin in Algorithm 8.
Then, the run-time complexity of the resulting specialized algorithm is in O

�

n (|G|+n r )|Dnonprunable/G|
�

.
Moreover, the effectivity of rank-pruning depends on the instance. More specifically, with

symmetries ignored:

(i) There is a point configuration∆∂ c
r−1 with n = 2r points of rank r with r (r+3)

2 cocircuits
for which the total number of not right-completable subsets is in Ω(2r ), whereas none of
the not right-completable subsets is non-prunable.

(ii) There is a point configuration∆dup
r−1 with n = 2r points of rank r with r cocircuits for

which the number of not right-completable subsets that are non-prunable is in Ω(2r ).

The first item shows that, for the enumeration and listing problems, rank-pruning can
lead to a spead-up from exponential to polynomial in the input and output sizes, whereas the
second item shows that, in general, rank-pruning cannot guarantee a run-time polynomial
in the input and output sizes.

Proof. The number of recursive calls equals the number of orbits of not-prunable subsets.
For each such subset there are at most n traversals of the main loop. In each main-loop the
worst-case run-time complexity is dominated by SemiIsNotRightComp, which computes
column-echelon forms for each non-element of the current subset. This amounts to at most
n column-echelon-form computations, taking at most r operations each. This proves the
run-time bound.

For item (i), consider for r ≥ 3 the point configuration ∆∂ c
r−1 consisting of the (r − 1)-

dimensional standard simplex∆r−1 together with r copies of the barycenter c of its lex-min
facet {1, 2, . . . , r−1}, forming the elements indexed by r +1, r +2, . . . , 2r . There are r cocircuits
correponding to the r facets of∆r−1: r −1 of them not containing any c and one containing
all copies of c. Moreover, there are

�

r
r−2

�

=
�

r
2

�

= r (r+1)
2 cocircuits containing all copies of c but

not the lex-min facet. In any non-empty subset S call an element i ∈ [n ] \S with i <maxS a
gap in S . The empty subset, by definition, has no gaps.

A coplanar subset S is not right-completable if and only if each cocircuit containing
it contains a gap in S . Define for a subset S the part R := S ∩ {1,2, . . . , r } corresponding
to ∆r−1 and the part C := S ∩ {r + 1, r + 2, . . . ,2r } corresponding to the copies of c. Call a
subset S =R ∪C a deadend if one of the following cases occurs:

• C has at least one gap.

• C has no gap, is non-empty, and |R | ≤ r −3.

• C is empty, and R has at least three gaps.
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In the following it is shown that a coplanar S is not right-completable if and only if it is a
deadend. Assume S is a deadend. Then, in the first case S violates the first rank bound, in
the second and third case S violates the second rank bound in Theorem 5. In particular, S is
prunable. Hence, it is not right-completable.

If S is not a deadend, then, in particular, C has no gaps. Moreover, if C is non-empty, then
R has r −1 or r −2 elements. If R has exactly r −1 elements, then R is a facet of∆r−1. Since S
is coplanar and C is non-empty, this facet can only be the lex-min facet {1, 2, . . . , r −1}. Then,
because C has no gaps, a right-expansion with all remaining copies {max C + 1, max C +
2. . . ,2r } of c leads to the cocircuit {1,2, . . . , r − 1, r + 1, r + 2, . . . ,2r }. If R has exactly r − 2
elements, then c is affinely independent of R in any case. Thus, the same right-expansion
as above leads to the cocircuit R ∪ {r + 1, r + 2, . . . ,2r }. If C is empty, then R = S has at
most two gaps. If R has exactly one gap, then S is already a facet of∆r . If it is the lex-min
facet, a right-expansion with all copies {r + 1, r + 2, . . . ,2r } of c leads to a cocircuit, and
otherwise S is a cocircuit already. If R has exactly two gaps, then, a right-expansion with
{max R +1, max R +2, . . . , r } (leading to a rank-r −2-subset) followed by a right-expansion
with all copies {r +1, r +2, . . . , 2r } of c (all affinely independent of the elements in R ) leads
to a cocircuit.

Consequently, being a deadend is equivalent to being not right-completable. Since all
deadends are prunable, so are all not right-completable subsets. Roughly estimated by
counting the possible C ’s in deadends, the number of not right-completable subsets is in
Ω(2r ), and all of them can be rank-pruned.

For item (ii), consider for r ≥ 3 the point configuration ∆dup
r−1 consisting of the (r − 1)-

dimensional standard simplex∆r−1 together with a copy of each of its elements, forming
the elements indexed by r +1, r +2, . . . ,2r . There are r cocircuits corresponding to the r
facets of the standard simplex. No subset S with ; 6= S ⊆ {3,4, . . . , r } is right-completable,
since any cocircuit containing it must also contain one of the points 1 or 2, both gaps in S .
Moreover, such a subset S is non-prunable since, first, no non-element to the left is in the
span of it (the first r points are independent) and, second, the non-elements to the right
can sufficiently increase the rank of any such S (its possible right-expansions contain a
complete copy of the standard r −1-simplex). The number of these subsets is 2r−2−1, which
is in Ω(2r ).

If G is given as an explicit set of permutations, the run-time is polynomial in input size
and the number of all non-prunable subsets up to symmetry. However, as the example
in Theorem 6(ii) shows, Algorithm 17 for counting/enumeration/listing is, in general, not
polynomial in the input and output sizes.

7.3 Results

The modified switch-table method in Algorithm 13 turned out to be the fastest variant of
IsLexMin for all the larger instances. (See the end of Section 5 for explanations concern-
ing the point configurations.) Particularly interesting is the enumeration of hyperplanes
spanned by the vertices of the d -dimensional hypercube Cd . This problem has already
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been studied a long time ago by Aichholzer and Aurenhammer [1]. Using cleverly a lot of
structural properties of hypercubes in particular, they were able to enumerate all hyper-
planes spanned by the vertices of the 8-cube, while the 9-cube’s hyperplanes remained
out-of-reach. In contrast to their efforts, the general-purpose algorithm of this paper could
compute their numbers without using any specific knowledge about cubes. And it was
able to compute the number of cocircuits (total and up to symmetry) of the 9-cube. For C9

compare the total number of its cocircuits to the number of all its r −1-subsets, which is
�

512
9

�

= 6,208,116,950,265,950,720 (four orders of magnitude larger) – direct signature com-
putations for all these subsets, given today’s computation power, would have been out of
reach. Table 5 shows all the results.

A # symmetries # cocircuits # cocircuits # nodes CPU time
up to symmetry in total [hh:mm:ss]

C2 8 2 6 9 0:00:00
C3 48 3 20 31 0:00:00
C4 384 6 140 126 0:00:00
C5 3840 15 3254 609 0:00:00
C6 46,080 63 252,434 4149 0:00:01
C7 645,120 623 71,343,208 55,540 0:00:04
C8 10,321,920 22,432 86,246,755,608 2,403,058 0:03:02
*C9 185,794,560 3,899,720 448,691,419,804,586 530,623,381 13:30:12
*∆(8, 3) 40,320 56 166,420 4,644 0:00:00
*∆(8, 4) 80,640 83 1,105,575 9,081 0:00:00
*∆(9, 3) 362,880 231 10,004,154 21,034 0:00:02
*∆(9, 4) 362,880 2,522 359,022,180 226,077 0:00:07
*∆(10, 3) 3,628,800 1,337 889,205,792 113,814 0:00:21
*∆(10, 4) 3,628,800 87,254 178,227,172,388 6,889,144 0:07:38
*∆(10, 5) 7,257,600 194,489 939,079,703,204 21,423,661 1:02:09

Table 5: Computational results for the enumeration of cocircuits in hypercubes and hyper-
simplices using 16 threads (numbers with a “*” are new)

8 Application II: Circuits

In this section it is shown how all circuits of a point configuration A can be enumerated up to
symmetry by exploring the downsetD of all independent subsets using SymLexSubsetRSComin_withData
(Algorithm 9).

8.1 Specializations

In order to use SymLexSubsetRSComin_withData, one has to specify how its problem-
specific subroutines IsInDownset, SemiIsNotRightExit, and IsCominOfDownset work.
Again, in these subroutines global data (preprocessed prior to the enumeration) and local
data (updated in each enumeration node) can be utilized to speed up the computations and
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avoid duplicate work. This time, the local data will consist of a matrix in column-echelon
form stacked on top of another matrix. The columns of the additional matrix yield addi-
tional information useful for circuits. For a subset S the columns of the top matrix are the
columns of a column-echelon form of the sub configuration A∗,S . The column in the bottom
matrix contains the coefficients of a linear combination of all original columns weakly to
the left that yields the column on top. If the column on top is the zero-column, then the
corresponding original column can be combined linearly from original columns strictly
to the left, and the signs of the coefficients in the bottom column yield the corresponding
circuit signature.

Formally, the stacked matrix can be defined as follows:

Definition 14. Let A∗,S be a subset of columns of a rank-r configuration A. For an integer
k ∈ [1, r +1] let Ik denote the k ×k -identity matrix.

A (r + |S |)× |S |-matrix R =
�

B
C

�

is a column-representation matrix of S if it is a column-
echelon form of the matrix

�

A∗,S
I|S |

�

(120)

Here, B is the configuration part, whereas C is the coefficient part.

Theorem 7. Let R=
�

B
C

�

be a column-representation matrix of a subset S of column indices
of A. Then S is dependent if and only if B∗,|S | = 0. Moreover, S is a circuit if and only if B∗,|S | is
the first zero-column in B and C|S | contains no zero entry. In that case, the signs in C|S | specify
one of the two possible circuits signatures of S restricted to its support S.

Proof. Note that
�

A∗,S
I|S |

�

· I|S | =
�

A∗,S
I|S |

�

. (121)

If this is transformed by admissible column operations, represented by the multiplication
of a matrix C from the right, into column-echelon form, one has:

�

A∗,S
I|S |

�

·C=
�

B
C

�

. (122)

with a column-representation matrix
�

B
C

�

of S . In particular, one has for the last column:

A∗,S ·C∗,|S | =B∗,|S |. (123)

S is dependent if and only if the last column is zero, by the properties of a column-echelon
form. Moreover, the entries of C∗,|S | constitute a linear dependence. Since the first rank B
columns of B are linearly independent and B∗,|S | is the first zero-column in B, one has that
rank(A∗,S ) = |S |−1. Thus, the kernel of A∗,S is one-dimensional, and a non-zero vector in it is
unique up to a non-zero scalar multiple. Therefore, the signs of C∗,|S | are unique up to sign-
reversal. Thus, the non-zero components of C∗,|S | constitute the inclusion minimal support
of a linear dependence among the columns in A∗,S . Hence, the signs of the components of
the complete vector C∗,|S | are a signature on the support of a circuit S if anxd only if there are
no zero-components in it.
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One can derive the information to process a node from the column-representation matrix
of its subset. For the membership in the downset of independent sets this is straight-forward.
Algorithm 18 shows the procedure.

Algorithm: IsInDownset(S ′,D, A,R,R′)

Input: A subset S ′ of column indices of A, the downsetD of coplanar subsets, the
configuration A, a column-representation matrix R=

�

B
C

�

of S ′, and the augmented

matrix R′ =
�

�

R
0>
�

,
�A∗,maxS ′

e|S ′ |

�

�

(not yet in column-echelon form, in general), where e|S ′| is

the unit vector in R|S ′| with a one in its last component
Output: (TRUE,R′)with R′ =

�

B′
C′
�

a column-representation matrix of S ′ if rank(R′) = |S ′| and
(FALSE,R′) otherwise

R′← colechForm(R′) ; /* compute column-echelon form */
if B′∗,|S ′| 6= 0 then /* if right-most conf-column non-zero */

return (TRUE,R′) ; /* S ′ is independent */

else
return (FALSE,R′) ; /* S ′ is dependent */

Algorithm 18: Check whether a subset of columns is independent

Given Lemma 7 it is easy to check a subset for co-minimality. The corresponding algo-
rithm is listed in Algorithm 19.

Algorithm: IsCominOfDownset(S ′,D, A,R,R′)

Input: A subset S ′ of column indices of A, the downsetD of independent subsets, the
configuration A, and local data given by a column-representation matrix R′ =

�

B′
C′
�

of S ′

Output: TRUE if S ′ is co-minimal inD, FALSE otherwise
if C′∗,|S ′| has zero-entries then /* zero-coefficients? */

return FALSE ; /* subset is not co-min */

else
return TRUE ; /* subset is co-min */

Algorithm 19: Check whether a subset of columns is contained in a circuit utilizing
the local data given by a column representation matrix

8.2 Analysis

Since each maximal independent subset is touched by the algorithm and each maximal
independent subset is built on a unique path of length at most the rank in the enumeration
tree, the efficiency of the algorithm solely depends on how many (maximal) independent
sets one can find compared to the number of circuits.
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Theorem 8. Assume that the critical-element method is used for IsLexMin in Algorithm 9.
Then, the run-time complexity of the resulting specialized algorithm is in O (n (|G|+ r )|D/G|).

Moreover:

(i) There is a point configuration∆c
r−1 with n = 2r points of rank r with r (r+3)

2 circuits for
which the total number of maximal independent subsets is 1+ r 2.

(ii) There is a point configuration ∆dup
r−1 with n = 2r points of rank r with r circuits for

which the number of maximal independent subsets is 2r .

Because the number of (r +1)-subsets in the example configurations is
�

2r
r+1

�

, the algo-
rithm achieves a speed-up in both cases compared to the naive algorithm that computes
the signature of each (r +1)-subset. In the former case, the speed-up is substantial from
exponential to polynomial, in the latter case it “only” reduces the exponential runtime of
the naive algorithm by an exponential factor to a shorter exponential runtime.

Proof. The number of recursive calls equals the number of orbits of independent subsets.
For each such subset there are at most n traversals of the main loop. In that loop, the
lex-min check takes time in O (|G|). The worst-case run-time complexity of the remaining
subroutines in the main loop is in O (r ). This proves the run-time bound.

For item (i) consider the point configuration∆c
r−1 consisting of the (r −1)-dimensional

standard simplex ∆r−1 together with r copies of its barycenter c, forming the elements
indexed by r +1, r +2, . . . , 2r . There are r circuits containing the standard simplex with an
arbitrary copy of c and

�

r
2

�

circuits consisting of two copies of c, resulting in r (r+3)
2 circuits in

total. The maximal independent subsets are the standard simplex and an arbitrary copy of c
with an arbitrary facet of the standard simplex, leading to a total of 1+ r 2 many maximal
independent subsets.

For item (ii) consider the point configuration∆dup
r−1 consisting of the (r −1)-dimensional

standard simplex∆r−1 together with a copy of each of its elements, forming the elements
indexed by r +1, r +2, . . . , 2r . There are r circuits corresponding to the r pairs of identical
points. In contrast to this, any choice of a copy for the r many vertices of the standard
simplex is a maximal independent subset, resulting in 2r many of them.

If G is given as an explicit set of permutations, the runtime is polynomial in the input
size and the number of all independent sets up to symmetry. However, the example in
Theorem 8(ii) shows that for counting/enumeration/listing it is, in general, not polynomial
in the input and output sizes.

Note that even for graphic matroids it is NP-hard to decide whether a given subset of
elements is contained in a circuit [17, Section 4]. Call this NP-hard decision problem the
“Extension-to-a-Circuit Problem (ECP)”. There is no order involved in this result. However,
given an instance to the ECP for a vector matroid given by a matrix, one can reorder the
columns of the matrix to start with the subset in question. Then, all potential circuits
containing the subset lex-contain it. Thus, an answer to the right-exitability problem for
circuit enumeration would answer the ECP instance as well. Thus, it cannot be expected
that all deadends can be avoided efficiently in our enumeration algorithm.
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Even a useful semi-check for right-exitability of a subset for circuit enumeration is
still unknown. Thus, for circuit enumeration, SemiIsNotRightExit is defined to simply
return FALSE for each subset (i.e., the subset might be a left segment of a co-minimal subset
ofD).

While this seems unsatisfactory at first glance, there are examples where the difficulty
of showing right-non-exitability becomes plausible. Extend the standard simplex to the
augmented standard simplex (∆n , p)with n +1 points, where p is an additional point at the
barycenter of some geometric k -face of∆n , k = 0, . . . , n , the centered face. There is exactly
one circuit, namely the new point p together with the centered face. Whether or not any
subset of the points in (∆n ) is contained in a circuit now depends on lex-containment in the
centered face. Any useful semi-decision algorithm for right-non-exitability would have to
find out the centered face (without actually knowing in advance that the centered face is
the key object).

8.3 Results

Table 6 shows some results that could be obtained using the resulting algorithm, where
again the modified switch-table method in Algorithm 13 turned out to be the fastest variant
of IsLexMin for the larger instances (see the end of Section 5 for explanations concerning
the point configurations).

A # symmetries # circuits # circuits # nodes CPU time
up to symmetry in total [hh:mm:ss]

C2 1 1 1 11 0:00:00
C3 48 3 20 40 0:00:00
C4 384 15 1348 219 0:00:00
C5 3840 186 353,616 2616 0:00:00
*C6 46,080 12,628 446,148,992 119,638 0:00:01
*C7 645,120 3,591,868 2,118,502,178,496 25,274,904 0:04:49
*C8 10,321,920 3,858,105,362 38,636,185,528,212,416 21,028,416,821 163:37:00
*∆(8, 3) 40,320 7,240 251,651,820 153,429 0:00:01
*∆(8, 4) 80,640 41,875 3,134,451,775 670,792 0:00:04
*∆(9, 3) 362,880 228,432 75,267,509,940 4,298,974 0:00:28
*∆(9, 4) 362,880 31,671,609 11,259,090,122,490 346,869,278 1:05:40
*∆(10, 3) 3,628,800 7,494,056 25,290,095,161,170 140,451,528 0:20:42
*∆(10, 4) 3,628,800 12,609,824,635 45,270,853,845,998,550 110,076,768,816 523:25:52

Table 6: Computational results for the enumeration of circuits in hypercubes and hypersim-
plices using 16 threads (numbers with a “*” are new)

9 Application III: Triangulations

In this section it is shown how all triangulations of a point configuration A can be enumerated
up to symmetry by exploring the downsetD of all subsets of mutually properly intersecting
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simplices using SymLexSubsetRSFeas_withData (Algorithm 10).
Most general-purpose enumeration algorithms for triangulations rely on an algorithm

based on the flip graph of triangulations [25, 8, 14]. Since Santos found a triangulation with-
out flips [29] it is known that one might not find all triangulations this way. There have always
been hints in the literature on how to enumerate all triangulations of a point configuration
by enumerating maximal cliques in the proper-intersection graph of all simplices. However,
to date no implementation of this idea could ever compete with flip-based algorithms.

Here, an all new attempt is presented based on symmetric lexicographic subset reverse
search for feasible subsets with pruning (Algorithm 10). In the following, a subset of pairwise
properly intersecting simplices is called a partial triangulation. Note that, according to this
definition, all triangulations are partial triangulations as well.

9.1 Specializations

As a first step towards the application of SymLexSubsetRSFeas_withData (Algorithm 10),
one has to specify how triangulations are represented as subsets of some finite set. To this
end, let A be a rank-r configuration with n elements. LetS be the set of feasible simplices
of A (where “feasible” may depend on the exact enumeration task, see Section 9.4 for some
examples), and let ns be its cardinality. Similarly, letR be the set of all simplex-facets not
contained in any facet of A (to be distinguished from the facets of A) and n f be its cardinality.

By fixing an arbitrary bijection S → [ns ] to encode simplices, any triangulation T
given by its set of maximal simplices can be represented as a subset T of [ns ]. While any
bijection will allow to use Algorithm 10, there is a special bijection that helps to accelerate
the semi-check for the non-right-extendability of a subset. For the rest of this section, let
idxs : (S ,<lex)→ ([ns ],<) and idx f : (R ,<lex)→ ([n f ],<) be the respective order-preserving
bijections. For convenience, denote the inverse functions by simp= idx−1

s and facet= idx−1
f ,

respectively. With this notation, the subset T corresponding to a triangulation T is given by
T = {s ∈ [ns ] : simp(s ) ∈T }, and the triangulation corresponding to a subset T is given by
T = {S ∈S : idxs (S ) ∈ T }. This motivates to say that T indexes T .

A brief inspection of Algorithm 10 shows that this results in the following: not only are
the triangulations enumerated in the lexicographic order of 2[ns ], but also each triangulation
itself is built by adding simplices one-by-one in lexicographic order.

The downsetD used in the method is the set of subsets indexing simplex subsets that are
pairwise properly intersecting. The setF of feasible subsets is the set of all subsets indexing a
triangulation. Since no triangulation strictly contains any other triangulation, one can apply
Algorithm 10 by specializing its subroutines IsFeasible, Expand, and SemiIsNotRightExt.

Next, some notions are introduced that help to set up appropriate global and local
auxiliary data, which will speed up the implementation. The global auxiliary data is defined
first. It is desirable to access quickly the incidence information of spanning simplices and
their facets. Given the characterization of a triangulation in Definition 13, the information
about the which simplices contain which interior simplex facets is important.
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Definition 15. For a rank-r -configuration A with n points, ns many simplices, and n f many
simplex-facets, define the interior-facets table as

intfacets:

�

[ns ] → 2[n f ];
s 7→

�

f ∈ [n f ] : facet( f ) is an interior facet of simp(s )
	

,
(124)

and the reverse convering-simplices table as

covsimps:

�

[n f ] → 2[ns ];
f 7→

�

s ∈ [ns ] : facet( f ) is an interior facet of simp(s )
	

.
(125)

In Algorithm 10 an expansion sequence is used. In the current application such a se-
quence corresponds to a sequence of lexicographically greater simplices that can be added
to a partial triangulation without violating proper intersection. Such a sequence can be
updated more easily when for all simplices the set of all simplices that have a proper inter-
section with it can be accessed quickly.

Definition 16. For a rank-r -configuration A with n points and ns many simplices, define
the admissibles table as

admsimps:

�

[ns ] → 2[ns ];
s 7→

�

s ′ ∈ [ns ] : simp(s ′) intersects properly with simp(s )
	

.
(126)

Next, some local auxiliary data is defined: with each subset indexing a partial triangula-
tion store

• the index set of all lex-greater simplices intersecting properly with it;

• the index set of all uncovered interior facets.

To this end, define:

Definition 17. Let T index a partial triangulation. Then the admissibles of T are defined as

admissibles(T ) :=
�

s ∈ [ns ] : s > s ′, simp(s ) intersects simp(s ′) properly ∀s ′ ∈ T
	

. (127)

Moreover, define the free interior facets of T as

freefacets(T ) :=
�

f ∈ [n f ] : facet( f ) interior facet of simp(s ) for exactly one s ∈ T
	

. (128)

From these data, some useful information can directly be derived.

Lemma 9. Let T index a non-empty partial triangulation. Moreover, if admissibles(T ) 6= ;,
let s index a simplex in admissibles(T ), and let T ′ be the expansion T ∪{s } of T by s . Then:

(i) T indexes a triangulation if and only if freefacets(T ) = ;.

(ii) The admissibles of T constitute the expansion sequence.
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Algorithm: IsFeasible(T ,F ,FIF)

Input: A subset T of simplex indices in [ns ], a set of feasible subsetsF (implicit), the set FIF
of free interior facets of T

Output: TRUE if T is a triangulation, FALSE otherwise
if FIF= ; then /* no free interior facets? */

return TRUE ; /* partial triangulation is covering */

else
return FALSE ; /* partial triangulation is not covering */

Algorithm 20: Check whether a partial triangulation is a triangulation by checking
whether all free interior facets are covered

(iii) If admissibles(T ) = ; and freefacets(T ) 6= ;, then T is not right-extendable.

(iv) The admissibles of T ′ can be computed as the intersection

admissibles(T ′) = admissibles(T )∩admsimps(s ). (129)

(v) The free interior facets of T ′ can be computed as the symmetric difference

freefacets(T ′) = freefacets(T )4 intfacets(s ). (130)

Proof. The assertions follow from straight-forward checks of definitions.

This is essentially what was used to-date in any attempt to enumerate all triangulations
of a configuration, compare [25, 8]. These methods did not scale well because without any
additional pruning they would process a very large number of nodes. For later reference,
call this the no-pruning method.

One significant improvement over this are certain necessary conditions for expansions
being extensions. The discussion starts with a condition that, if false, allows to break out of
the loop over all expansions immediately.

Theorem 9. Let T index a non-empty partial triangulation with freefacets(T )and admissibles(T )
both non-empty.

Then, if T ∪{s ′} is right-extendable for some s ′ ≥ s with s , s ′ ∈ admissibles(T ), then

min
�

freefacets(T )
�

≥min
�

intfacets(s )
�

. (131)

Proof. If the minimal interior facet index of an admissible s is too large to cover the minimal
free facet of T , then the same holds for each admissible s ′ > s as well, since

min
�

intfacets(s ′)
�

≥min
�

intfacets(s )
�

for each s ′ > s . (132)

The theorem is a formal version of this observation.
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Algorithm: Expand(T , s , G, L)

Input: A subset T of simplex indices in [ns ], a new simplex index s ∈ ADM, global data G
encompassing the interior-facets table IT and the admissibles table AT of A, local data
L of T encompassing the free interior facets FIF and the admissibles ADM of T

Output: (break, T ′, L′), where break is true if this and all future expansions cannot be
extensions, (T ′, L′) is the new node with T ′ = T ∪{s }, and L′ is the correct local Data
for T ′

if min(FIF)<min
�

IT(s )
�

then /* can s cover minimal free facet? */
return (TRUE,−,−) ; /* min. free facet not coverable by s ′ ≥ s */

T ′← T ∪{s } ; /* add s to the subset */
FIF′← FIF4 IT[s ] ; /* free interior facets by symmetric difference */
ADM′← ADM∩AT[s ] ; /* admissibles by intersection */
L′← (FIF′,ADM′) ; /* put together local data */
return (FALSE, T ′, L′) ; /* return the node */

Algorithm 21: Expand a subset indexing a partial triangulation by a new simplex
index

Since all partial triangulations are built in lexicographic order, Theorem 9 means the
following: the loop over the expansion sequence in Algorithm 10 can be left as soon as the
minimal interior facet index of the new simplex index is larger than the minimal free interior
facet index of T , in which case T ∪{s } cannot be right-extended. The lexicographic building
order guarantees that the minimal free interior facet cannot be covered by any simplex
added in the future either. The application of this necessary condition is done inside the
Expand subroutine and is called lex-breaking.

In the sequel, some necessary conditions for right-extendability are discussed. Before
going into the details, note that it is unlikely to find a complete and efficient exact character-
ization of right-extendability. The reason is the following. The decision problem of whether
or not a partial triangulation can be extended to a triangulation is NP-hard in general. This
can be derived from the NP-hardness of triangulating non-convex 3-polytopes [28], because
for a general partial triangulation the uncovered part yet to be triangulated is, in general,
non-convex. Here, only extensions to the right are interesting w.r.t. a certain ordering of
simplices. However, since for the purpose of this decision problem one can reorder the
simplices in such a way that the simplices of the given partial triangulation come first, the
right-extendability problem is NP-hard as well. Thus, it is justified to resort to necessary
conditions, resulting in a semi-check for pruning. First, the strongest necessary condition
for right-extendability is established.

Theorem 10. Let T index a non-empty partial triangulation. Then: If T is right-extendable,
then there is a covering set of simplex indices C ⊆ admissibles(T ) such that

(i) the covering set is pairwise properly intersecting: For each s ∈C one has for all s ′ ∈C \{s }
that s ∈ admsimps(s ′),

(ii) the covering set covers all free interior facets: For each f ∈ freefacets(T ) there is an s ∈C
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with f ∈ intfacets(s ).

Proof. Note that the set of new simplices in any feasible right-completion of T

• stems from the current admissibles of T ,

• is itself properly intersecting,

• contains for each free interior facet a simplex containing that facet.

Thus, any feasible right-completion is a special case of a covering set C as in the theorem.

Call the application of Theorem 10 full-pruning. Note that the existence of a covering set
of simplices as in Theorem 10 does not guarantee the right-extendability, since its elements
may lead to new free interior facets that have to be covered by even more simplices, which
may fail at some point. It is not straight-forward how to implement full-pruning without
branching-out the potential covering sets of simplices – after all, the idea of pruning is
essentially to avoid branching in the first place.

Thus, the following weaker test was developped. It does not demand a covering set of
simplices which is pairwise intersecting properly. Instead, for each free interior facet it is
checked whether there is a covering simplex that is intersecting properly with at least one
such covering simplex for each other free interior facet.

Theorem 11. Let T index a non-empty partial triangulation. Then: If T is right-extendable,
then for each f ∈ freefacets(T ) there is a multi-covering set of simplex indices C ( f )⊆ admissibles(T ),
called the f -covering simplices, such that

(i) there is an s f ∈C ( f ) that is identical to or intersects properly with at least one s f ′ ∈C ( f ′)
for all f ′ ∈ freefacets(T ),

(ii) for all f ∈ freefacets(T ) and all s f ∈C ( f ), f ∈ intfacets(s f ).

Proof. Given a covering set of simplex indices as in Theorem 10, C ( f ) can be set to the
unique simplex index in C containing f .

Call the application of the following Theorem 11 strong pruning. It was this necessary
condition that, for the first time ever, allowed the enumeration of all symmetry classes
of triangulations for instances like the 4-cube (a standard benchmark that has 247,451
symmetry classes of triangulations) in a CPU time comparable to the CPU times of flip-
based algorithms.

Given the lex-orders of simplices and facets, one can prove another necessary condition
for right-extendability that can be evaluated much faster and has – surprisingly – been
almost as effective for the experiments in this paper. It is based on the following theorem
that is very similar to Theorem 9.

Theorem 12. Let T index a non-empty partial triangulation with freefacets(T )and admissibles(T )
both non-empty.

Then, if T is right-extendable, the following holds:

min
�

freefacets(T )
�

≥min
�

intfacets
�

min(admissibles(T ))
�

�

. (133)
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Algorithm: SemiIsNotRightExtStrong(T ′,D,F , G, L, L′)

Input: A subset T ′ of simplex indices in [ns ], the downsetD of subsets indexing partial
triangulations, the setF of triangulations (given implicitly by IsFeasible), global
data G encompassing the covering-simplices table CS and the admissibles table AT
of A, local data L of T encompassing the free interior facets FIF and the admissibles
ADM of T ′

Output: TRUE if T ′ is not right-extendable, FALSE if T ′ may be right-extendable
for f ∈ FIF do /* for all free interior facets */

COVset[ f ]←CS[ f ]∩ADM[T ′] ; /* update the f -covering simplices */
if COVset[ f ] = ; then /* no admissible f -covering simplex? */

return TRUE ; /* f not coverable by admissibles */

COVSetisNew[ f ] = TRUE ; /* f -covering simplices are new */

COVAnyisNew← TRUE ; /* something is new */
while COVAnyisNew do /* while something is new */

for f ∈ FIF do /* for all free interior facets */
if COVSetisNew[ f ] = FALSE then /* f -covering simplices not new? */

continue ; /* next loop element */

/* collect f -admissible simplices: */
COVadm[ f ] =

⋃

s∈COVset[ f ]AT[s ];

COVAnyisNew← FALSE ; /* nothing new so far */
for f ∈ FIF do /* for all free interior facets */

/* collect f ′-admissibles among the f -covering simp’s: */
COVset′ =

⋂

f ′∈FIF\{ f }
�

COVset[ f ′]∪COVadm[ f ′]
�

;

if COVset′ = ; then /* no f -covering simplex admissible? */
return TRUE ; /* f not coverable by admissibles */

if COVset′ 6⊇COVset[ f ] then /* COVset[ f ] need restriction? */
/* restrict to f ′-admissible simplices: */
COVset[ f ]←COVset[ f ]∩COVset′;
COVSetisNew[ f ]← TRUE ; /* f -covering simplices are new */
COVAnyisNew← TRUE ; /* something has changed */

return FALSE ; /* COVset[ f ] is now a multi-covering set */

Algorithm 22: The strong-pruning semi-check whether a partial triangulation can
certainly not be right-extended to a triangulation based on a direct application of
Theorem 11

Proof. If T is right-extendable, then for each free facet indexed in freefacets(T ) there must
be an admissible simplex indexed in the admissibles of T covering it, since admissibles(T ′)⊆
admissibles(T ) for all T ′ ⊇ T . In particular, for the lex-minimal free facet there must be
such an admissible simplex. The lex-minimal facet that can be covered by some admissible
simplex is the lex-minimal facet of the lex-minimal admissible simplex. Thus, if the lex-
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A # triangulations # nodes CPU time [hh:mm:ss]
in total by pruning method by pruning method

no strong lex no strong lex

C3 74 2915 486 497 0.02 0.01 0.01
∆3×∆2 4488 2,385,961 29,423 29,577 1.31 0.11 0.06
C(9, 4) 357 8,627,257 4861 4926 12.87 0.08 0.02
C(10, 4) 4824 >5,180,000,000 73,085 73,259 >29:54:40.79 0.83 0.11
C(11, 4) 96,426 – 1,597,366 1,597,784 – 20.16 1.72

Table 7: Comparison of the three pruning methods no-pruning, strong-pruning, and lex-
pruning for a 3-cube, a product of a tetrahedron and a triangle, and some cyclic polytopes
(tiny to small instances, single-thread with symmetries ignored)

Algorithm: SemiIsNotRightExtLex(T ′,D,F , G, L, L′)

Input: A subset T ′ of simplex indices in [ns ], the downsetD of subsets indexing partial
triangulations, the setF of triangulations (given implicitly by IsFeasible), global
data G encompassing the interior-facets table IT and the admissibles table AT of A,
local data L of T encompassing the free interior facets FIF and the admissibles ADM
of T ′

Output: TRUE if T ′ is not right-extendable, FALSE if T ′ may be right-extendable

if min(FIF)<min
�

IT
�

min(ADM)
�

�

then /* min. free facet too small? */
return TRUE ; /* min. free facet not coverable by admissibles */

else
return FALSE ; /* no contradiction to right-extendability */

Algorithm 23: The lex-pruning semi-check whether a partial triangulation can cer-
tainly not be right-extended to a triangulation based on a direct application of Theo-
rem 12

minimal free facet is lex-smaller than this, then it cannot be covered by any admissible
simplex of any superset T ′ ⊇ T , and T cannot be right-extendable. The assertion is just a
translation of this into a formula.

Call the application of Theorem 12 lex-pruning. In Table 7 a comparison of the node
counts is presented for no-pruning and no lex-breaking, strong-pruning with lex-breaking,
and lex-pruning with lex-breaking for tiny to small examples. No-pruning is not competitive,
which explains the limited success of all implementations previously available. Moreover,
the examples (and others not in the table) exhibit that strong-pruning is slightly more
effective than lex-pruning. However, in all examples computed so far the nodes pruned
extra do not justify the substantially larger effort (see Section 9.2 for an analysis of worst-case
run-times).

Now, the specialized subroutines can be presented for application of Algorithm 10 to
the enumeration of all triangulations. For the instances considered, the fastest variant of
IsLexMin was IsLexMin_viaIter from Algorithm 11. This comes as no surprise (after the
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analysis in Section 4.2), since the degree ns is usually large compared to the order k of the
symmetry group. This time, the global and local auxiliary data are more voluminous. The
global data G consists of the configuration A with hash maps AT for its admissibles and IT
for its interior facets. The local data L stored with each subset T of simplex indices consists,
besides the local data necessary for the lex-min check (in this case a critical-element table
CET of T ), a set ADM representing the admissible simplices of T and a set FIF representing
the free interior facets of T . The feasibility check just needs part of the local data and is
straight-forward (see Algorithm 20). When a node is processed, the corresponding partial
triangulation is expanded by a simplex admissible for it. Thus, the set ADM in the local data
of a node and ordered lexicographically yields an expansion sequence. When a new simplex
is added, one can generate the new local data from the local data of T , as is described in
Algorithm 21. Note that lex-breaking according to Theorem 9 might be possible.

Finally, Algorithms 22 and 23 list implementations of strong-pruning and lex-pruning,
respectively, that reveal in many cases when a partial triangulation can certainly not be right-
extended to a triangulation. Algorithm 22 requires some explanation. In that algorithm,
for some partial triangulation T ′, first, for each free interior facet f ∈ FIF construct a set
COVset[ f ] containing the f -covering simplices that

(a) contain the free interior facet f and

(b) intersect properly with T ′.

Second, for each free interior facet f ∈ FIF construct the set COVadm[ f ] of all so-called
f -admissible simplices that are identical to or intersect properly with at least one of the
f -covering simplices. The goal is to eliminate in rounds over all f ∈ FIF all those simplices
from the sets of f -covering simplices that are not f ′-admissible for at least one other f ′ ∈ FIF.
As soon as no further f -covering simplex is eliminated in a complete round over all f ∈ FIF,
the f -covering simplices contain a multi-covering set as in Theorem 11. Since in every
while-loop at least one f -covering simplex is removed, the number of while-loop traversals
and, hence, the algorithm is finite.

9.2 Analysis

LetDnonprunable ⊆D be the set of subsets satisfying the necessary conditions of Theorem 9
and Theorem 10 or 12, depending on which pruning method is chosen. Then, the following
can be said about the run-time complexity of the resulting algorithm.

Theorem 13. Assume that IsLexMin is implemented via the critical-element method. Let ns

be the number of simplices in A. Moreover, let m be the maximal number of simplices in a
triangulation of A. Then, the run-time complexity of SymLexSubsetRSFeas_withData with
strong-pruning is in O

�

ns (|G|+ (r 3m 3c + r 2m 2c 2)ns ))|Dnonprunable/G|
�

; with lex-pruning the

run-time is in O
�

ns (|G|+ns + r m )|Dnonprunable/G|
�

.
Moreover:
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(i) For any r ∈N, there is a point configuration∆dup
r−1 with 2r points of rank r whose number

of triangulations up to symmetry is one and whose number of simplices ns is 2r , for
which SymLexSubsetRSFeas_withData indeed traverses its main loop 2r times.

(ii) For any n ∈N, there is a point configuration Ln with n+2 points of rank 2 whose number
of triangulations is inΘ

�

2n
�

, whose number of right-extendable partial triangulations is

in Θ
�

2n
�

, and whose number of all partial triangulations is in Θ
�

( 3+
p

5
2 )

n
�

. In particular,

asymptotically the number of all partial triangulations is 1
2

�

3+
p

5
4

�n
times as large as

the number of right-extendable partial triangulations. Moreover, all expandable but
not right-extendable partial triangulations can be pruned by lex-pruning or strong-
pruning.

(iii) For any d ∈N, there is a point Configuration C∗d with n = 2d points of rank d +1 whose
number of triangulations is d , whose number of right-extendable partial triangulations
is 1+ d 2d−1, and whose number of all partial triangulations is 1+ d

�

2(2
d−1) − 1

�

. In

particular, the number of all partial triangulations is asymptotically 2(2
d−1−d ) times as

large as the number of right-extendable partial triangulations. Moreover, all expandable
but not right-extendable partial triangulations can be pruned by strong-pruning, but
not necessarily by lex-pruning.

(iv) For any k ∈N, there is a point configuration Pk with n = 4(k +3) points of rank 4 for
which, independent of the order of points, there are at least 24k not right-extendable
partial triangulations all of which can be pruned by strong-pruning.

(v) For any k ∈N, there is a point configuration Pk with n = 5(k +3) points of rank 4 for
which, independent of the order of points, there are at least 25k not right-extendable
partial triangulations none of which can be pruned by full-pruning, strong-pruning or
lex-pruning.

The first item shows that the number of simplices, and, therefore, the number of traver-
sals of the main loop in SymLexSubsetRSFeas_withData, can be exponential in the number
of triangulation orbits. The second and third items show to what extent (symmetries ig-
nored) the number |D| of all partial triangulations can grow compared to the number of
right-extendable partial triangulations and to what extentDnonprunable can be smaller thanD.
The fourth item shows that, symmetries ignored and independent of the order of points,
strong-pruning can lead to a pruning of an exponential number of partial triangulations,
whereas the fifth item shows that, even with full-pruning, an exponential number of dead-
ends in the enumeration tree is possible.

Proof. Preparations: First note that unions and symmetric differences of subsets can be
implemented in (amortized) time linear in the sum of the elements of all the operands,
whereas intersections can be implemented in (amortized) time linear in the number of
elements of the smaller set whenever it is known which set this is. The cardinality of the set
of free interior facets FIF in T ′ is at most r m . The best straight-forward worst-case estimate
for the number of simplices in AT[s ] admissible to a given simplex s is the number of all
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simplices ns . The best straight-forward worst-case estimate for the number of f -covering
simplices f ∪{i } in COVset[ f ] for a given f is at most the number c +1= n − (r −1) of points
not in f , which is in O (c ).

The number of elements in an expansion sequence of a non-empty subset is no larger
than the number of admissibles of one of its members, which, by the preparations, is no
more than the number ns of simplices. This is the maximal number of traversals of the
main loop in SymLexSubsetRSFeas_withData. The dominating remaining subroutine in
the main loop besides IsLexMin and SemiIsNotRightExt is Expand. By the preparations,
the updates of FIF and ADM take no more than O (r m +ns ) operations. The remaining effort
inside the main loop differs according to the pruning method.

For strong-pruning: Since in each while-loop traversal of strong-pruning at least one
f -covering simplex is removed, the while-loop traversals are bounded by the number of
simplices in COVset[ f ] summed over all f ∈ FIF. Thus, the number of while-loop traversals
is in O (r m c ). The number of for-loop traversals is in O (r m ) for each of the three for-loops.

The effort inside of the loops consists of

(a) the computation for COVset[ f ] for all f ∈ FIF prior to the while-loop;

(b) the computation of COVadm[ f ] for all f ∈ FIF inside the while-loop;

(c) the computation of COVset′ to update COVset[ f ] for all f ∈ FIF inside the while-loop.

Concerning item (a), note that the asymptocially smaller subset in the set-intersection
computation of COVset[ f ] is CS[ f ], whose number of elements is in O (c ). Thus, the time to
compute COVset[ f ] for all f ∈ FIF is in O (r m c ).

Concerning item (b), note that the number of elements involved in the set-union com-
putation of COVadm[ f ] is in O (c ns ). Thus, the computation of COVadm[ f ] for all f ∈ FIF
takes time in O (r m c ns ). Since this happens inside the while-loop, the total effort for this is
in O

�

(r m c )(r m c ns )
�

=O (r 2m 2c 2ns ).
Finally, concerning (c), note that the total number of elements involved in the mixed set-

union and set-intersection computation of COVset′ is in O (r mns ) (for the set-intersections
the respective smaller sets are unclear, whence one cannot take advantage of this), which
dominates the third for-loop. Hence, the potential restriction of COVset[ f ] for all f ∈ FIF
takes time in O (r 2m 2ns ). Since this happens inside the while-loop, the total effort for this is
in O

�

(r m c )(r 2m 2ns )
�

=O (r 3m 3c ns ).
Putting everything together yields that strong-pruning takes time in O

�

(r 3m 3c+r 2m 2c 2)ns )
�

,
which dominates the effort for Expand. Summarized, the run-time complexity of SymLexSubsetRSFeas_withData
for triangulations with strong-pruning is in O

�

ns (|G|+(r 3m 3c +r 2m 2c 2)ns ))|Dnonprunable/G|
�

.
For lex-pruning: Whenever for all sets sorted structures are used or their minima are

cached during each modification, the run-time complexity of lex-pruning is constant, which
is dominated by the effort for Expand. Summarized, for lex-pruning the run-time of the re-
sulting algorithm SymLexSubsetRSFeas_withData is in O

�

ns (|G|+r m+ns )|Dnonprunable/G|
�

– an improvement so significant compared to strong-pruning that now SemiIsNotRightExt
is not even the dominating subroutine anymore!
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For item (i), define∆dup
r−1 to be the r −1-dimensional standard simplex∆r−1 with all points

duplicated. Up to symmetry, there is only one triangulation. The number of simplices,
however, is 2r . In SymLexSubsetRSFeas_withData, each of these simplices will first be
added to the empty partial triangulation before the check for lexicographic minimality can
dismiss these redundant branches.

For item (ii), consider the point configuration Ln of rank 2 consisting of n +2 distinct
points on a line labelled consecutively from 0 through n +1. It has 2n triangulations, each
corresponding to the set of used interior points. Any partial triangulation indexed by T
induces a segment pattern P (T ) := ε0ε1 . . .εn ∈ {−1,0,1}n+1 with the following meaning:
εi =−1 if [i , i +1] is not covered by a segment in T , εi = 1 if [i , i +1] is covered by a segment
in T starting at i , and εi = 0 if [i , i +1] is covered by a segment in T starting at some k < i ,
where i = 0,1, . . . , n . Call a pattern in {−1,0,1}n+1 consistent if it does not start with a “0”
and if no “0” ever follows a “−1”. Then, P (T ) is consistent for all partial triangulations T .
Given any consistent pattern P ∈ {−1, 0, 1}n+1, one can construct (from left to right) a partial
triangulation T for which P = P (T ): A “1” starts a new segment, a “0” continues the same
segment, and a “−1” starts an uncovered interval. Therefore, P is a bijection between
consistent patterns in {−1, 0, 1}n+1 and partial triangulations. The count C ( j )of all consistent
patterns of length j is surprisingly interesting: Call P ( j ) the number of patterns of length j
not ending with a “−1” (positive patterns), and call N ( j ) the number of patterns of length j
ending with a “−1” (negative patterns). Then the consistency implies that P (1) = 1, N (1) = 1.
In order to obtain a positive pattern, negative patterns can only be extended consistently
by a “1”, whereas positive patterns can be extended by a “0” or a “1”. In order to obtain a
negative pattern, any pattern can and must be extended by a “−1”. Therefore:

P ( j +1) = 2P ( j ) +N ( j ), N ( j +1) = P ( j ) +N ( j ). (134)

Let now F1, F2, F3, F4, . . . be the Fibonacci series with F1 = F2 = 1 and Fj = Fj−1+ Fj−2 for j > 2.
Define P ′( j ) := F2 j and N ′( j ) := F2 j−1 with P ′(1) = F2 = 1 and N ′(1) = F1 = 1. Moreover:

P ′( j +1) = F2 j+2 = F2 j+1+ F2 j = F2 j + F2 j−1+ F2 j = 2P ′( j ) +N ′( j ), (135)

N ′( j +1) = F2 j+1 = F2 j + F2 j−1 = P ′( j ) +N ′( j ). (136)

For all j = 1, 2, . . . this proves that P ( j ) = P ′( j ) = F2 j and N ( j ) =N ′( j ) = F2 j−1. Consequently,
C ( j ) = P ( j )+N ( j ) =N ( j +1) = F2 j+1. By a straight-forward application of the Eigenvalue-
method to the linear system of difference equations

�

P ( j +1)
N ( j +1)

�

=

�

2 1
1 1

��

P ( j )
N ( j )

�

(137)

for P ( j ) and N ( j ), the asymptotic growth of C (n ) = P (n )+N (n ) =N (n +1) is exactly ( 3+
p

5
2 )

n .
A non-empty partial triangulation T is right-extendable if and only if its segment pattern

P (T ) is consistent and has no subpattern “(−1)1”. That is, right-extendable partial triangula-
tions cover the line completely up to some right-most covered point. Hence, each subset
of the points 1, 2, . . . , n +1 gives rise to a right-extendable partial triangulation by using the
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maximal point as the right-most point covered by the partial triangulation (0 for the empty
subset) and the remaining points to specify a complete triangulation of the line to the left of
it. This induces a bijection between the set of right-extendable partial triangulations and
the set of subsets of {1, 2, . . . , n +1}, which has cardinality 2n+1. Hence, the number of partial
triangulations is, asymptotically, by an exponential factor

�

3+
p

5
2

�n
/2n+1 = 1

2

�

3+
p

5
4

�n
> 1

2

�

5
4

�n

larger than the number of right-extendable partial triangulations of Ln .
Because of the given order of points from left to right, each “(−1)1” subpattern is detected

immediately by lex-pruning: assume that the segment-pattern of an expandable but not-
right-extendable partial triangulation T has the “−1” is in position i − 1 and the “1” in
position i for some i ∈ {1, . . . , n}. This means, the interval [i − 1, i ] is uncovered, and the
interval [i , i +1] is covered by some simplex in T . Hence, T indexes a triangulation T that
has {i } as a free interior facet of one of its simplices {i , j }, j > i . The admissibles of T
index, by definition, simplices that are all lex-larger than {i , j } and intersecting properly
with {i , j }. The lex-minimal admissible simplex for T is therefore lex-at-least { j , j +1}. The
minimal facet of the minimal admissible simplex for T is lex-at-least { j }, which is lex-larger
than the free interior facet {i } of T , which is equal to or lex-larger than the minimal free
interior facet of T . Consequently, T will be lex-pruned. Therefore, all the expandable but
not right-extendable partial triangulations will be pruned by lex-pruning and, therefore,
also by strong-pruning.

For item (iii), consider the d -dimensional regular cross polytope C∗d+1 =
�

C∗d Od Od

0 1 −1

�

with
C∗1 = (1,−1) and Od the origin in dimension d (coordinates may be homogenized by adding
a row of ones throughout). From the fact that C∗1 is a segment and C∗d+1 is the one-point
suspension of C∗d at the origin for d > 0 (see [8, Chp. 4]) the following can be easily derived
by induction: C∗d has 2d points in rank d +1 and 2d facets. For each antipodal diagonal D
between antipodal points 2k − 1 and 2k , k = 1,2, . . . , d , there is exactly one triangulation
T (D ) using it. Each triangulation consists of 2d−1 many simplices. Each simplex in T (D )
has exactly two boundary facets (those not containing D ) and d −1 interior facets (those
containing D ). The crucial property of any triangulation of a regular cross polytope is that
each triangulation T (D ) is uniquely determined by any of its simplices, since all simplices in
T (D ) contain D . Furthermore, only the simplices inside T (D ) intersect properly with each
other, since all distinct antipodal diagonals intersect improperly by themselves (the origin is
in the interior of each antipodal diagonal). Therefore, only the empty set (which is a partial
triangulation right-extendable to any triangulation) and the d 2d−1 non-empty lex-subsets
of one of its d many triangulations T can be right-extended, namely to T . In contrast to
this, in total there are d

�

2(2
d−1)−1

�

non-empty partial triangulations so that the total number
of partial triangulations including the empty set is as claimed. Since any free interior facet f
of a partial triangulation T contains some antipodal diagonal D , only simplices from T (D )
contain f . Because in T (D ) the interior facet f is contained in a unique other simplex s not
in T , any multi-covering set of simplices C ( f ) like in Theorem 11 must contain s . Therefore,
such a multi-covering set exists if and only if T is a lex-subset of T (D ), i.e., if and only if T
is right-extendable to T (D ). In other words, all not right-extendable partial triangulations
can be pruned by strong-pruning. Note that there may be partial triangulations where the
lex-min free interior facet is coverable by an admissible simplex, but not all free interior
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facets are. Thus, lex-pruning may miss some not right-extendable partial triangulations. (In
experiments it can be seen that the number of misses is very small, though.)

For the constructions of the Pk in items (iv) and (v) proceed as follows. The order of
points will not be relevant here, since in this particular case it can be proved that the partial
triangulations involved cannot be extended at all, even if all so-far unused simplices could be
used as expansions. For both items consider for a fixed `≥ 3 the point configuration P :=P(`)
forming a prism over a regular `-gon with 2` points. For i = 0, 1, . . . ,`−1 (all i -indices below
are considered modulo `), call the top points vi (labelled by vi ), and call the bottom points wi

(labeled by wi ). Consider the cyclic set of diagonals vi wi+1 inside the ` quadrilateral facets
of P labelled by Fi . These diagonals induce unique triangulations Ti := {vi wi wi+1, vi wi+1vi+1}
of all the Fi . From [26] it is known that P has no triangulation that uses

⋃`−1
i=0 Ti .

Beyond each of the ` facets Fi , add k + 1 distinct points labeled by Ui := {ui 1, . . . , ui k}
and ui in the order of increasing distance to Fi on a line through the barycenter of Fi

perpendicular to aff(Fi ). This results in the point configuration Pk with `(k + 3) points in
rank 4. Its convex hull consists of the prism over the regular `-gon and ` pyramids over the `
quadrilateral facets with apices ui .

Construct now partial triangulations triangulating the ` pyramids. To triangulate pyra-
mid Fi ∗ui , choose an arbitrary subset Vi ⊆Ui and place the points in order of increasing
distance to Fi to generate a placing triangulation (see [8, Chp. 4]). This results in the triangu-
lation, where the first point in Vi or ui (if Vi is empty) is joined to Ti , and all the remaining
points (including ui ) are joined to the visible boundary facets of the previous partial tri-
angulation. For each pyramid, no two distinct subsets Vi lead to identical triangulations,
since a point is a vertex of some simplex in the placing triangulation if and only if it is in Vi .
Moreover, the various triangulations of the pyramids can be combined aribtrarily to a partial
triangulation of all the pyramids

⋃`

i=1

�

Ti ∗ui

�

. This results in 2`k distinct partial triangula-
tions. All these partial triangulations use the cyclic set of diagonals of the prism, i.e., none of
them is extendable to a triangulation of Pk . In particular, none of them is right-extendable.

Furthermore, all of them have
⋃`−1

i=0 Ti as their free interior facets. With the help of the
Cayley-trick (see [12] for the general theory and [26] for the application to prims over `-
gons) the following can be eye-balled: for `≤ 4 not all free interior facets f can be covered
by a covering set of simplices C ( f ) as in Theorem 11, and for ` ≥ 5 the set of simplices
⋃k−1

i=0 {vi wi+1vi+1wi+2} is pairwise intersecting properly and covers all free interior facets.
Thus, for `= 4 we obtain item (iv), and for `= 5 we obtain item (v).

If G is given as an explicit set of permutations, Theorem 13 shows that enumeration
of triangulations with SymLexSubsetRSFeas_withData is polynomial in input size and the
number of orbits of non-prunable subsets. This is because, in this case, the number of sim-
plices is at most the number of triangulations, which is at most the number of triangulation
orbits times the group order, which is at most the number of non-prunable subsets times
the input size. The first example shows that this may be exponential in the input and output
sizes in caseG is given by a set of generators, even if IsLexMin could be implemented in poly-
nomial time. The second and third examples show that SymLexSubsetRSFeas_withData
without pruning is for counting/enumeration/listing, in general, not polynomial in the input
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and output sizes. The third example, moreover, shows that SymLexSubsetRSFeas_withData
with lex-breaking and strong- or lex-pruning for counting/enumeration cannot be poly-
nomial in the input and output sizes because the exponentially many elements per found
object all have to be touched by the algorithm. Whether SymLexSubsetRSFeas_withData
with lex-breaking and strong- or lex-pruning is polynomial in the input and output sizes for
listing when G is given as an explicit set of permutations remains an open problem.

9.3 Results

A # sym’s # triangulations # triangulations # nodes CPU time
up to symmetry in total [hh:mm:ss]

C4 384 247,451 92,487,256 3,446,659 0:00:01
∆6×∆2 30,240 533,242 16,119,956,160 6,325,472 0:01:46
∆4×∆3 2880 7,402,421 21,316,106,880 116,083,390 0:02:31
*∆5×∆3 17280 25,606,173,722 442,472,050,753,920 429,725,338,124 1332:19:55
*∆(7, 2) 5040 37,676,752 189,355,661,460 1,397,621,560 0:47:15
*∆(6, 3) 1440 59,708,427 85,793,497,200 2,555,523,948 0:27:08
3∆3 24 925,148,763 22,201,684,367 7,154,329,212 0:10:56
C(14, 8) 28 2,429,751 68,007,706 187,209,582 0:00:23
C(19, 14) 38 6,515,385 247,567,074 1,265,333,660 0:04:09
C(16, 3) 2 58,492,955,941 116,985,744,91 887,659,233,813 17:16:57
*C(14, 4) 28 244,771,183 6,853,476,616 8,343,040,544 0:12:59
*C(15, 4) 30 18,845,509,142 565,365,033,880 650,520,069,380 18:59:44
*C(14, 5) 2 328,152,636,588 656,305,030,644 11,575,302,270,565 320:42:24
*C(14, 6) 28 8,314,337,199 232,797,963,456 535,970,897,965 18:10:42
*C(14, 7) 2 15,813,939,113 31,627,843,174 937,148,113,630 23:36:37
*C(15, 9) 2 1,397,895,884 2,795,741,709 117,124,014,923 3:21:53
*C(16, 10) 32 1,902,605,255 60,881,310,552 213,053,994,784 9:52:13
*icosahedron 120 95 8598 3813 0:00:00
*pseudoicosahedron 24 7701 182,670 147,775 0:00:00
*dodecahedron 120 12,775,757,027 1,533,079,037,570 125,333,463,449 4:58:15
*pyritohedron 24 1,363,918,758,719 32,734,029,351,118 13,786,801,148,394 381:32:27

Table 8: Computational results for the enumeration of triangulations using 16 threads
(numbers with a “*” are new)

Table 8 presents the results obtained by applying SymLexSubsetRSFeas_withData with
lex-breaking and lex-pruning to the enumeration of all triangulations of point configu-
rations (see the end of Section 5 for explanations concerning the point configurations).
Table 9 shows for three selected examples the CPU times compared to mptopcom 1.4 (see
[14, 15]). Note that, by design, in general mptopcom and TOPCOM do not compute the same
thing: mptopcom computes all subregular triangulations, whereas TOPCOM computes all tri-
angulations, for which there was no competitive software at all so far. In the listed examples,
though, the numbers are known to coincide. The hypercube C4 was selected as an example
with symmetry group of moderate order, the product of simplices∆6×∆2 was chosen as an
example with a rather large symmetry group, and C(12,4) represents cyclic polytopes, for
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A CPU times [hh:mm:ss]
mptopcom 1.4 TOPCOM 1.2.0b

subregular regular all regular

C4 0:01:46 0:02:41 0:00:01 0:00:54
∆6×∆2 0:09:25 0:13:10 0:01:46 0:05:36
C(12, 4) 0:00:21 - 0:00:01 -

Table 9: Comparison of CPU times with the so far fasted software mptopcom 1.4 in [14]
on small examples using 16 threads (the triangulations output was activated in both and
then piped to /dev/null for a fair comparison); for these examples, all triangulations are
subregular; since mptopcom 1.4 does not support regularity checks for cyclic polytopes, the
regular-triangulations timing was skipped for C(12, 4)

A # sym’s # reg. triang’s # reg. triang’s CPU time CPU time
up to symmetry in total all regular

C4 384 235,277 87,959,448 0:00:01 0:00:54
∆(7, 2) 5040 30,485,496 153,209,697,210 0:47:15 8:42:33
∆(6, 3) 1440 42,489,025 61,035,863,100 0:27:08 18:10:37

Table 10: Comparison of CPU times for the enumeration of all versus regular triangulations
using 16 threads for selected examples

which, first, the symmetry group is tiny, second, triangulations have many simplices (which
is a stress-test for extension-based enumeration), and, finally, for which mptopcom 1.4 uses
a specialized (faster) implementation.

It can be seen that TOPCOM is particularly fast for the computation of all triangulations of
C4, where exploring the enumeration tree is the dominant operation. For∆6×∆2 the sym-
metry handling is dominant, where TOPCOM is still several times faster, but not by the same
margin. For the regularity checks, cddlib was used as an LP solver [11]. Since these regu-
larity checks (besides being time-consuming) are advantageous for mptopcom’s flip-based
enumeration and symmetry handling, the speed-up is less pronounced for the enumeration
of regular triangulations.

Some numbers could be computed for the first time, to the best of my knowledge.
The largest new examples are the number of triangulations of the pyritohedron (largest
number up to symmetry) and the number of triangulations of∆5×∆3 (largest total number).
Meanwhile, the numbers for three-dimensional cyclic polytopes can be computed much
faster via the enumeration of persistent graphs [10].

Table 10 one can see how much time the regularity check takes compared to the mere
enumeration of triangulations. For these results, again cddlib was used as an LP solver
inside the regularity checks [11]. The numbers for the hypersimplices confirm the recently
computed numbers from [5].

Remark 3. For all examples computed in this paper, it is not necessary to use a high-
performance computing device; all numbers could be computed even faster by the eight
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performance cores of an M1Max laptop (see Section 6 for details on the computational
environment).

9.4 Enhancements

For the enumeration of triangulations, extension-based algorithms can be equipped with
some addititional functionality that is not easily incorporated in flip-based algorithms. A
large part of this is based on the following observation.

Observation 1. For any restriction on the triangulations to be enumerated that is a restriction
on all simplices in the triangulation, SymLexSubsetRSFeas_withData can be run without
modifications except that

• the set of considered simplex indices has to be restricted to the indices of the feasible
simplices;

• the set of considered symmetries has to be restricted to the set-wise stabilizer subgroup
of the set of feasible simplices.

This can be applied to full triangulations, i.e., triangulations that use all the points
(exclude any simplex with points beyond its vertex set in its convex hull), unimodular
triangulations (exclude any simplex with non-minimal volume), triangulations requiring
a given face in each simplex (exclude any simplex not containing the face), triangulations
avoiding some face alltogether (exclude any simplex containing the face), etc. In particular,
this allows to compute all triangulations of the boundary of a point configuration, allthough
such triangulations (topological spheres) do not even belong to the class of triangulations of
point configurations (topological balls). A triangulation where all simplices contain a given
point is called a conical triangulation with the given point as its apex. A conical triangulation
where the apex is a relative interior point and all other used points are in the boundary is
called central. The link of a central triangulation at its apex is then a boundary triangulation.
Coning any boundary triangulation to a relative interior point yields a central triangulation.
Thus, there is a bijection between central triangulations and boundary triangulations. In
particular, central triangulations do not depend on the relative interior point that was used
to construct them.

Observation 2. Let A be a point configuration with symmetry group G. Then, all boundary
triangulations of A can be computed up to symmetry as follows:

(1) Remove all points in the relative interior of A to obtain A′ and let G′ be the restriction of
G to the remaining elements.

(2) Let b := 1
|A′|
∑

p∈A′ p be the barycenter of A′ (or any other point in its relative interior) and

add it with new label 0 to A′ to obtain Acentral.

(3) Let S central be the set of all simplices in Acentral that contain point 0, and let Gcentral be
the set-wise stabilizer ofS central in G′.
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(4) Apply SymLexSubsetRSFeas_withData to Acentral with simplex setS central and symme-
tries Gcentral in order to compute all central triangulations of Acentral up to symmetry.

(5) For each central triangulation of Acentral compute the link of 0 by deleting the point 0 in
all its simplices to obtain the corresponding boundary triangulation.

Before this will be applied to full root polytopes below, another type of restrictions
has to be considered: prescribed symmetries. This is slightly more involved. Note that a
triangulation can have symmetries that are not in the automorphism group of the point
configuration, since, a-priori, a triangulation need not use all the points. All symmetries are
in the automorphism group Aut

�

vert(A)
�

≤Sn of the vertices vert(A) of A, though.

Definition 18. Let A be a point configuration with n points andHbe a subgroup of Aut
�

vert(A)
�

.
An element s indexes an H-feasible simplex if any two elements from the H-orbit of s index
identical or properly intersecting simplices. Two elements s and s ′ intersect H-properly if
any two elements from their respective H-orbits index identical or properly intersecting
simplices. A triangulation of A indexed by T is H-invariant, if σ(T ) = T for all σ ∈ H. A
symmetry π of A is H-feasible whenever for all s ∈ [n ] one has that s indexes an H-feasible
simplex if and only if π(s ) indexes an H-feasible simplex.

With this notion, the following observation is the basis for the enumeration of triangula-
tions with prescribed symmetries. It will be called a theorem because of its impact, although
the proof is immediate.

Theorem 14. Let A be a point configuration with n points, and let H be a subgroup of
Aut

�

vert(A)
�

. Let T be a non-empty subset of pairwise H-properly intersecting H-feasible
simplices whose set of free interior facets is empty. Then T indexes an H-invariant triangula-
tion of A.

Proof. Let T be as in the assumption. Since proper H-intersection implies in particular
proper intersection, T indexes a partial triangulation. Since it has no interior free interior
facets, it indexes a triangulation. For σ ∈ H and s ∈ T , by H-feasibility and H-proper
intersection, the imageσ(s ) indexes a simplex that is identical to or intersects properly with
all simplices in T , in particular with the simplex indexed by s . Since any triangulation is an
inclusion-maximal set of properly intersecting simplices,σ(s ) is contained in T . Applied
to all s ∈ T this implies that σ(T ) ⊆ T . Since any σ ∈ H, as a permutation, is a bijection,
σ(T ) = T must hold. Sinceσ was chosen arbitrarily in H, the claim is proved.

That means: Once the bijection indexing simplices has been restricted to H-feasible ele-
ments, the symmetries have been restricted to H-feasible symmetries, and the admissibles
table of the point configuration has been modified to represent H-proper intersection, then
SymLexSubsetRSFeas_withData will automatically enumerate only H-invariant triangula-
tions up to H-feasible symmetries.

Table 11 compares the numbers of nodes and triangulations for various point configura-
tions with and without certain restrictions. Prescribing symmetries is particularly effective.
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A restriction # feas. # triang’s # triang’s # nodes
symm’s up to symm. in total

C4 none 384 247,451 92,487,256 3,446,659
C4 unimodular 384 159,037 59,546,240 2,375,773
*C4 Z2-inv. 384 181 22,280 12,884
*C4 Z2-inv./unim. 384 154 19,520 11,414

*pyrit. none 24 1,363,918,758,719 32,734,029,351,118 13,786,801,148,394
*pyrit. Z2-inv. 24 1,313,581 15,761,630 80,245,911
*pyrit. Z3-inv. 6 7968 15,889 546,939

3∆3 none 24 925,148,763 22,201,684,367 7,154,329,211
3∆3 full 24 21,302,400 511,052,427 316,591,002
3∆3 unimodular 24 14,459,488 346,903,379 207,932,285
*3∆3 Z4-inv. 8 98 181 4795
*3∆3 Z4-inv./full 8 36 65 2365
*3∆3 Z4-inv./unim. 8 18 33 1762
*3∆3 S4-inv. 24 3 3 100
*3∆3 S4-inv./full 24 1 1 74
*3∆3 S4-inv./unim. 24 0 0 29

4∆3 none 24 ? ? ?
4∆3 full 24 ? ? ?
4∆3 unimodular 24 ? ? ?
*4∆3 Z4-inv. 8 836,982 1,670,895 73,894,796
*4∆3 Z4-inv./full 8 108,103 215,479 11,807,847
*4∆3 Z4-inv./unim. 8 79,147 157,724 8,862,008
*4∆3 S4-inv. 24 12 12 1182
*4∆3 S4-inv./full 24 5 5 785
*4∆3 S4-inv./unim. 24 3 3 543

3∆4 none 120 ? ? ?
3∆4 full 120 ? ? ?
3∆4 unimodular 120 ? ? ?
*3∆4 Z5-inv. 20 43,882 175,441 6,071,031
*3∆4 Z5-inv./full 20 15,841 63,306 2,436,943
*3∆4 Z5-inv./unim. 20 7720 30,832 1,345,947
*3∆4 S5-inv. 120 1 1 56
*3∆4 S5-inv./full 120 0 0 45
*3∆4 S5-inv./unim. 120 0 0 45

∆4×∆4 none 28,800 ? ? ?
*∆4×∆4 Z5-inv. 200 317 9630 61,039
*∆4×∆4 Z2-inv. 240 30,327,170 3,638,732,520 2,016,686,741

Table 11: Computational results for the enumeration of triangulations using 16 threads
without and with restrictions on the feasibility of a triangulation (numbers with a “*” are
new) to demonstrate the reduction of effort as indicated by the no. of nodes; since C4, the
pyritohedron, and∆4×∆4 are in strictly convex position, all triangulations are full; for∆4×∆4

as a product of simplices all triangulations are unimodular
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Consider, for example, the dilated tetrahedron 3∆3 with S4-symmetry when the enumera-
tion is restricted to S4-invariant triangulations. Prior to the new method in this paper, the
only way to deal with prescribed symmetries was to inspect all triangulations and filter by
symmetry in post-processing. In other words, in order to count all S4-invariant triangula-
tions of 3∆3 up to S4-feasible symmetry, it was necessary to generate all triangulations up to
symmetry at some point in the process. According to Table 8, for the enumeration method
in this paper (which is the fastest known so far) this takes 7,154,329,212 enumeration nodes.
Now, with the new method based on S4-feasible simplices that intersect S4-properly, com-
puting the three S4-invariant triangulations up to S4-feasible symmetry (in this case, all
24 elements of S4 are S4-feasible) takes only 100 enumeration nodes. And with 79 nodes
the unique S4-invariant triangulation using all the lattice points in 3∆3 is found. Finally, it
takes only 29 enumeration nodes to prove computationally that there is no unimodular S4-
invariant triangulation of 3∆3. The enumeration effort is, therefore, completely dominated
by preprocessing. While the case of 3∆3 the post-processing approach would still be viable
(though inefficient), things are different, e.g., for 4∆3: an enumeration of all triangulations
seems currently out of reach. Still, the new method can compute in seconds the triangula-
tions with full symmetry. This time, three unimodular S4-invariant triangulations exist. As
an example for a less restricting prescribed symmetry group, the Z4-invariant triangulations
(induced by cyclic permutations of coordinates) have been computed as well in essentially
a minute.

A restriction # feas. # triang’s # triang’s # nodes
symm’s up to symm. in total

P(A2) none 12 8 32 100
P(A2) central 12 1 1 29
P(A2) central/Z2-inv. 12 1 1 26

P(A3) none 48 1843 79,884 51,039
P(A3) central 48 7 64 557
P(A3) central/Z2-inv. 48 2 8 258

P(A4) none 240 32,483,441,808 7,795,598,797,008 1,438,773,642,274
P(A4) central 240 15,264 3,523,506 2,776,349
P(A4) central/Z2-inv. 240 20 1782 12,950

P(A5) none 1440 ? ? ?
P(A5) central 1440 ? ? ?
*P(A5) central/Z2-inv. 1440 112,234 79,216,008 183,816,883

Table 12: Computational results for the enumeration of all/central/Z2-invariant triangula-
tions of full root polytopes using 16 threads (the number with a “*” is new, the numbers of
Z2-invariant central triangulations up to P(A4) have been computed in [9] by a completely
different method before and have been confirmed by this computation)

My original motivation to compute triangulations with prescribed symmetries came
from the n-dimensional full root polytopes P(An ) in ambient n+1-space, where the centrally
symmetric central triangulations have a special meaning [9]. Up to now, prior to the result

81



in this paper no numbers for P(A5) have been published, restricted or not. Nota bene: In
[9] it was already reported that P(A5) has 25,224 regular central and centrally symmetric
triangulations. This was based on preliminary results from this paper, though.

Table 12 shows the all the results up to n = 5. Using the new method in this paper the
number 112,234 of central and centrally symmetric (Z2-invariant) triangulations of P(A5)
could be computed up toZ2-feasible symmetries for the first time (in about one hour). Again,
all symmetries of P(An ) are Z2-feasible. Here, the post-processing approach would have
been way more time-consuming: A several-weeks-long partial enumeration of the central
triangulations of P(A5) showed that there are more than 1,799,917,616 symmetry classes
of central triangulations (2,591,706,000,744 in total using 1,130,442,682,392 enumeration
nodes).

The smallest instance for products of simplices with unknown number of all triangu-
lations is ∆4×∆4. A several-months-long partial enumeration with several interruptions
with checkpointing on up to 192 threads showed that there are more than 365,127,837,881
symmetry classes of triangulations (10,515,476,512,745,280 in total using 7,431,758,631,675
enumeration nodes). In contrast to this, it can now be computed for the first time in less
than a minute that there are, e.g., 317 triangulations with Z5-symmetry (i.e., cyclic symme-
try of order 5) up to the Z5-feasible symmetries of order 200. For the vertices vi , v j of ∆4,
these symmetries are generated by the permutation (vi , v j ) 7→ (vi+1, v j+1) for i , j = 0, 1, . . . , 4
considered modulo 5. This took no more than 61,039 enumeration nodes. The total num-
ber of such Z5-invariant triangulations is 9630. The results for Z2-symmetries induced
by (vi , v j ) 7→ (v j , vi ) in ∆4×∆4: There are 30,327,170 Z2-invariant triangulations up to the
Z2-feasible symmetries of order 240. The total number of these is 3,638,732,520. This took
2,016,686,741 enumeration nodes (which is perfectly tractable).

Another enhancement stems from the combination of extension-based enumeration and
flip-graph exploration in one go. For the following, recall that a triangulation is subregular,
if it can be flipped to a regular triangulation by a sequence of GKZ-increasing flips (upflips).
Call it non-subregular otherwise. Call a triangulation a regular-component triangulation
(rc-triangulation) if can be flipped to a regular triangulation by a sequence of arbitrary flips.
Call it a non-regular-component triagulation (nrc-triangulation) otherwise.

In order to count all non-subregular triangulations, proceed as follows:

• Enumerate all triangulations by extension.

• For each non-regular triangulation found, search for a regular triangulation in the
flip-graph by a depth-first search along upflips dropping all restrictions and ignoring
symmetry.

• Count all non-regular triangulations that cannot be upflipped to a regular triangulation
this way.

Similarly, in order to count all nrc-triangulations, proceed as follows:

• Enumerate all triangulations by extension.
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• For each non-regular triangulation found, search for a regular triangulation in its
flip-graph component dropping all restrictions. In order to heuristically find a regular
triangulation more quickly, e.g., use the following heuristic, where symmetries are
ignored except in the final step:

– dive along flips that lexicographically increase the triangulation;

– dive along flips that lexicographically decrease the triangulation;

– depth-first-search along GKZ-increasing flips;

– depth-first-search along GKZ-decreasing flips;

– breadth-first-search along all flips to obtain a conclusive answer.

• Count all non-regular triangulations that could not be flipped to a regular triangulation
at all.

This has been applied to the following configurations: 3∆3 (where it is known that all
triangulations are subregular from combining the results in [14] and this paper), 4∆3, 3∆4, the
pyritohedron, and∆4×∆4. The latter example was of special interest because of the following:
It is known that∆k×∆` has a connected flip-graph for all k ≤ 3 [21] and that∆4×∆` has a
non-connected flip-graph for ` sufficiently large [20] (by a non-constructive probabilistic
proof for ` ≈ 4 · 104). The result does not exclude that ∆4×∆4 has a non-connected flip-
graph. In order to make computations tractable, cyclic symmetries have been prescribed
throughout. Cyclic symmetries were chosen, since many famous non-regular triangulations
exhibit cyclic symmetries in one way or another.

Table 13 show the results with some details concerning the effort in terms of the number
of regularity checks (which is the dominating factor as soon as it is applied). The most
striking result: For the first time, to the best of my knowledge, non-subregular triangulations
have been found, namely in 4∆3 and in 3∆4. On the other hand, all of the non-subregular
triangulations are rc (they can actually all be flipped to a regular triangulation by only
GKZ-increasing or only GKZ-decreasing flips). Together this means: mptopcom 1.4 on this
input with the given order of points (see the end of Section 6) would inevitably miss out
on some rc-triangulations of 4∆3 and 3∆4. Note that without prescribed symmetries the
computational approach above would have been intractable for 4∆3, 3∆4 and∆4×∆4 given
today’s computational power.

The following prototypical theorem summarizes the finding that demonstrate the po-
tential of the method, in the spirit of [19].

Theorem 15. There are 317Z5-invariant triangulations of∆4×∆4 up toZ5-feasible symmetry
(9630 in total); 247 of them are non-regular (8260 in total). All these triangulations are
connected to the flip-graph component of the regular triangulations by GKZ-increasing flips.
In particular, they are all subregular.

There are 7968Z3-invariant triangulations of the pyritohedron up toZ3-feasible symmetry
(15,889 in total); 2222 of them are non-regular (4430 in total). All these triangulations are
connected to the flip-graph component of the regular triangulations by GKZ-increasing flips.
In particular, they are all subregular.
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A restriction # feas. # triang’s # regularity cpu time
symm’s up to symm. checks [hh:mm:ss]

*pyrit. Z2-inv./non-regular 24 157,909 1,313,581 0:14:08
*pyrit. Z2-inv./non-subreg. 24 0 3,960,419 0:40:38
*pyrit. Z2-inv./nrc 24 0 4,308,087 0:46:29
*pyrit. Z3-inv./non-regular 6 2222 7968 0:00:05
*pyrit. Z3-inv./non-subreg. 6 0 34,577 0:00:19
*pyrit. Z3-inv./nrc 6 0 33,805 0:00:19

3∆3 Z4-inv./non-regular 8 24 98 0:00:29
3∆3 Z4-inv./non-subreg. 8 0 259 0:00:41
3∆3 Z4-inv./nrc 8 0 274 0:00:47

*4∆3 Z4-inv./non-regular 8 580,117 836,982 0:48:40
*4∆3 Z4-inv./non-subreg. 8 2507 11,722,197 8:58:14
*4∆3 Z4-inv./nrc 8 0 16,223,896 14:40:39

*3∆4 Z5-inv./non-regular 20 35,367 43,882 0:17:58
*3∆4 Z5-inv./non-subreg. 20 58 1,211,612 1:28:56
*3∆4 Z5-inv./nrc 20 0 1,467,289 1:54:42

*∆4×∆4 Z5-inv./non-regular 200 247 317 0:03:50
*∆4×∆4 Z5-inv./non-subreg. 200 0 5817 0:04:39
*∆4×∆4 Z5-inv./nrc 200 0 6369 0:04:40

Table 13: Computational results for triangulations with special symmetries that were
checked for non-regularity, non-subregularity and flip-graph connectivity to the component
of the regular triangulations (“nrc” = non-regular-component triangulation; numbers with
a “*” are new)

There are 1,313,581 Z2-invariant triangulations of the pyritohedron up to Z2-feasible
symmetry (15,761,630 in total); 157,909 of them are non-regular (1,894,796 in total). All these
triangulations are connected to the flip-graph component of the regular triangulations by
GKZ-increasing flips. In particular, they are all subregular.

There are 836,982Z4-invariant triangulations of 4∆3 up toZ4-feasible symmetry (1,670,895
in total); 580,117 of them are non-regular (1,159,626 in total), and 2507 of them are non-
subregular (5014 in total). All these triangulations are connected to the flip-graph component
of the regular triangulations (some by GKZ-increasing and some by GKZ-decreasing flips).

There are 43,882 Z5-invariant triangulations of 3∆4 up to Z5-feasible symmetry (175,441
in total); 35,367 of them are non-regular (141,442 in total), and 58 of them are non-subregular
(232 in total). All these triangulations are connected to the flip-graph component of the regular
triangulations (some by GKZ-increasing and some by GKZ-decreasing flips).

To the best of my knowledge, a computation of the numbers with prescribed symmetries
has not even been considered with the methods known prior to this paper, most likely for
the following reason: For all known flip-based algorithms prescribed symmetries have no
chance to reduce the effort of enumeration, since the flip-graph of these triangulations is,
in general, not connected, not even for the regular triangulations: just consider 2∆2 and
its two symmetry classes of regular triangulations with 120-degree rotational symmetry
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with one and four simplices, respectively. Since their cardinalities differ, they can not
be equivalent w.r.t. to the symmetries of 2∆2. Moreover, they are not connected by a
flip. This marks a systematic advantage of extension-based enumeration algorithms like
SymLexSubsetRSFeas_withData.

A regularity checks . . .
. . . in triangulations only . . . in all nodes

# nodes # reg. checks CPU time # nodes # reg. checks CPU time
[hh:mm:ss] [hh:mm:ss]

C4 3,446,659 247,451 0:00:54 3,382,448 1,791,034 0:04:59
(C4)∗ 18,316,313 75,756 0:01:38 192,448 79,266 0:01:11

Table 14: Regularity checks in each node versus regularity checks only for triangulations on
the 4-cube (235,277 regular out of 247,451 triangulations) and its Gale dual (490 regular out
of 75,756 triangulations)

Regularity checks can reduce the enumeration effort of extension-based algorithms if
regularity is checked for each partial triangulation. Because regularity checks are quite
expensive compared to the enumeration operations, the benefits are outweighed by the
effort for the examples seen so far. However, there are examples where the early regularity
checks pay off. One such example is the enumeration of regular triangulations of the (totally
cyclic) vector configuration corresponding to a Gale dual of the 4-cube, as can be seen in
Table 14. There, the number of necessary regularity checks is only ever-so-slightly increased
by checking each node. Since for this example many triangulations are non-regular, the
resulting reduced effort in the enumeration tree leads to shorter CPU times. Note that for
these early regularity checks there is a warm-start opportunity if the LPs are stored withing
the local auxiliary data of a node. This would speed-up the regularity checks in each node.
Since TOPCOM’s default LP solver from cddlib does not support warm-starts yet, TOPCOM
does not yet support warm-starts either.

In contrast to most of the other mentioned restrictions, requiring regularity is known to
reduce the effort for flip-based algorithms as well, since the exploration of the flip-graph can
be restricted to the flip-graph of regular triangulations, which is connected, in contrast to the
flip-graph of all triangulations [8, Chapter 5]. The flip-graph of all regular conical (and, thus,
central) triangulations of a d -dimensional point configuration A with n points is connected,
too: if the apex point is the first point, then the central triangulations form the face of the
secondary polytope induced by the supporting hyperplane {z ∈ Rn : z1 = vold (conv A)}.
Moreover, any face of the secondary polytope is a polytope itself. Thus, it has a connected
edge graph, and each edge in this graph corresponds to a flip [8, Chapter 5].

Finally, one can use the methods in this paper to design optimization algorithms as
follows. Any variant of algorithm SymLexSubsetRS – as any enumeration algorithm – can
be turned into a branch-and-bound optimization algorithm by specifying an objective
function and a dual-bound procedure. This was used to compute the minimal number of
simplices in a triangulation for some examples. Details are omitted, since the method is
straight-forward. Example results are: a minimal triangulation of the product of a square
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and a triangle has 10 simplices (a result originally proved in [30]with quite some effort, since
in that paper more general dissections are allowed), which took less than a tenth of a second;
a minimal triangulation of the 4-cube has 16 simplices, which took less than half a second;
a minimal triangulation of the regular dodecahedron has 23 simplices, which took less
than 10 minutes; a minimal triangulation of the pyritohedron has 23 simplices, too, which
took less than 4 hours. And a minimal unrestricted triangulation of the full, centered root
polytope in ambient 5-space has 46 simplices, which took less than 11 hours, whereas the
enumeration of all its triangulations took around 95 hours. A minimal centrally symmetric
central triangulation of it has 70 simplices, which took half a second. All computation
times for optimization are significantly shorter than those for the complete enumeration.
In branch-and-bound, the exploitation of symmetries is especially vital, since none of the
equivalent branches leading to an optimal leaf can ever be pruned.

9.5 Notes on the Use of GKZ Vectors

The switch-table method to compute canonical representatives from [14] is particularly
efficient if it can be based on a representation of triangulations by the so-called GKZ-vector
(Gelfand-Kapranov-Zelevinsky vector, see [8, Chapter 5]). The GKZ-vector is a vector with
a component for each point in the configuration. Such vectors can be compared lexico-
graphically like subsets of simplex indices. Subsets of simplices (as in this paper) can be
interpreted as characteristic vectors with as many components as there are simplices. While
each triangulation can be represented by its characteristic vector, each regular triangulation
can be uniquely represented by its GKZ-vector. Since, in general, the number of points is
much smaller than the number of simplices spanned by the points, the representation by
GKZ-vectors is significantly more compact than the representation as characteristic vectors.
Moreover, when using switch tables the lexicographic comparison of two GKZ-vectors can
be much faster than the lexicographic comparison of two characteristic vectors. Thus, one
may ask whether the lexmin-check in SymLexSubsetRSFeas_withData could be acceler-
ated by utilizing GKZ-vectors, at least for the enumeration of regular triangulations. The
answer is no, at least not in any straight-forward way.

The reason is the basic justification of SymLexSubsetRS: a suitable equivalent of Lemma 2
does not hold in any straight-forward variant for canonicals based on the order of GKZ-
vectors. Here is why. The inspection of the subset poset of partial triangulations of a square
with the points ordered as

A=





0 1 0 1
0 0 1 1
1 1 1 1



 (138)

shows that picking the lexmax GKZ-vector as the canonical representative would result
in {124,134} with GKZ-vector (2,1,1,2) being canonical. Note that the symmetries of the
square act transitively on points, simplices, and triangulations. However, neither the subset
{124}with GKZ-vector (1,1,0,1) nor the subset {134}with GKZ-vector (1,0,1,1)would be
canonical, since only {1, 2, 3}with GKZ-vector (1, 1, 1, 0) is canonical. Thus, there is no way
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to sort the simplices such that an equivalent of Lemma 2 holds with a canonical defined by
the lexmax GKZ-vector.

Picking instead the lexmin GKZ-vector as the canonical representative and sorting the
simplices by increasing GKZ-vector is, therefore, the only way to make an equivalent of
Lemma 2 true for this point configuration. Now consider the following six-point configu-
ration whose symmetries are horizontal and vertical reflection as well as rotation by 180
degrees.

A′ =





0 1 1 1 0 0
0 0 1 2 2 1
1 1 1 1 1 1



 (139)

For the partial triangulation T = {356,345,236} the GKZ-vector is (0,1,3,1,2,2), which is
lexmin (= canonical) in its orbit. Removing the simplex 236 with the lexmax GKZ-vector leads
to the partial triangulation {356, 345}with GKZ-vector (0, 0, 2, 1, 2, 1), which is not lexmin in
its orbit, since by horizontal reflection the partial triangulation {456, 346} is equivalent and
has the lexsmaller GKZ-vector (0, 0, 1, 2, 1, 2).

Thus, no straight-forward equivalent of Lemma 2 holds true, and, hence, there is no
correct SymLexSubsetRS available in general based on GKZ-vectors.

10 Conclusions

Variants of the generic algorithm SymLexSubsetRS have been introduced to enumerate
maximal, co-minimal, and feasible subsets of a finite set up to symmetry. New versions of lex-
minimality checks and new pruning methods for partial cocircuits and partial triangulations
have been presented and analyzed. The new methods allowed for the computation of many
new cardinalities, among them the number, up to symmetry, of cocircuits of the 9-cube, the
number of circuits of the 8-cube, and the number of all triangulations of the pyritohedron,
the dodecahedron, and∆5×∆3.

The algorithm SymLexSubsetRS can be enhanced. First, some types of restrictions im-
posed on the objects to be enumerated can reduce the enumeration effort by directly in-
validating branches in the enumeration tree. This was shown for triangulations, most
notably with prescribed symmetry, where restricted enumeration problems for, e.g., full
root polytopes could be solved that would have been intractable without the restrictions,
at the time being. Second, an objective function and a dual-bound procedure together
with SymLexSubsetRS generate a straight-forward optimization algorithm. This was applied
to find triangulations with a minimal number of simplices for the 4-cube and the regular
dodecahedron in much less time than the enumeration takes. The efficiency of such an
optimization algorithm will depend on the quality of the dual-bound procedure. It would be
interesting to see where such an approach would be competitive to other special optimiza-
tion algorithms (like the universal-polytope approach [7] for the minimal triangulation).

The new methods should have many more applications beyond the three applications
in this paper like the enumeration of maximal cliques in a graph up to symmetry. This will
be subject of further research.
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