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Abstract

This paper introduces three variants of the enumeration algorithm symmetric lexicographic
subset reverse search and finds specializations for three applications: cocircuits, circuits, and tri-
angulations of point configurations. There are two new methods presented to check the lexico-
graphic minimality of a subset in its orbit: the critical-element method and the modified switch-
table method. Moreover, new application-dependent methods to reduce the number of necessary
enumeration nodes are introduced: rank-pruning for cocircuits and lex-pruning for triangula-
tions. For circuits, a compact data structure, the column representation matrix, is introduced that
allows the detection of signed circuits only by admissible column operations. With an implemen-
tation of the ideas in the software package TOPCOM, in all three applications known benchmarks
can be computed faster by a large margin, and new numbers, like the number of cocircuits of the
9-cube, the number of circuits of the 8-cube, and the number of all triangulations of the product
of a 5- and a 3-simplex can be computed for the first time.
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1 Introduction

This paper systematically studies how to enumerate subsets of a finite set up to symmetry based on a
specializtion of the reverse-search paradigm to subsets orbits. In order to demonstrate the potential
of this approach, three applications are presented: for a point or vector configuration, enumerate
up to symmetry all its cocircuits, all its circuits, and all its triangulations, respectively. In all three
applications the scales of problem instances that can be handled are extended significantly.

Let us start with a review of related literature. A fairly general account for the complexity of enu-
meration algorithms can be found in [11], where the objects to be enumerated are considered as the
results of certain abstract closure operations. All the enumeration problems there do not consider
symmetries.

An example where the problem of ignoring symmetries is apparent, is the enumeration of cir-
cuits of a matroid. This brings us to the second application in this paper, which concerns signed
circuits of a point or vector configuration. There is an incremental-polynomial-time algorithm for
the enumeration of circuits in [9] based on the exchange axiom for circuits, which improves on older
algorithms like the one in [12] based on using bases for constructing circuits. However, it is not clear
how symmetries could be exploited in this algorithm. Moreover, the nature of the exchange axiom
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shows that the time to add one more circuit is at least quadratic in the number of already computed
circuits, which seems prohibitive at least for the larger examples in this paper.

Dual to this is the enumeration of signed cocircuits of a point or vector configuration, pointing
at the first application in this paper. In [1] all hyperplanes spanned by vertices of the d -dimensional
hypercube C d were classified and enumerated up to d = 8 (12 days of cpu time on a computer that
was fast according to the standards of that time). The authors estimated a cpu time of 35 years for d =
9 for their method based on the classification of normal vectors. There seems to be no documented
algorithm or code enumerating the hyperplanes in a general point or vector configuration.

The top-level enumeration method in this paper can be seen as a specialization of reverse search
[2] to subsets up to symmetry.

Reverse search has been specialized to the enumeration of orbits in [6] and parallelized in [3].
The ideas therein were then the basis for parallel enumeration up to symmetry of all subregular tri-
angulations, a certain subset of the component of regular triangulations, in [7]. This now directly
shifts the focus to the third application in this paper. The freely available package mptopcom signif-
icantly extended the scale of instances that could be handled compared to the earlier TOPCOM [14],
which itself was a large step forward from de Loera’s pioneering maple-code PUNTOS from his thesis
[4]. The code mptopcom was later specialized for cyclic polytopes to generate some new numbers
[8] extending the computational results in [14, 15].

All these attempts are flip-based, i.e., they explore the flip graph of triangulations, where two
triangulations share an edge if they are connected by a bistellar flip. This is a generalization of swap-
ping diagonals in a convex quadrilateral in dimension two (see [5] for definition in all dimensions).
Since Santos’s triangulation without flips in [17] it is known that flip-based algorithms may not find
all triangulations in general. TOPCOM [14] was the first available software to enumerate all trian-
gulations by building them simplex-by-simplex, which will be called an extension-based algorithm.
However, the examples that could be computed were only toy-size examples. In [6] the extension-
based enumeration of triangulations was reduced to the enumeration of maximal cliques in the
proper-intersection graph of all simplices. However, no computational results were given, and the
results in this paper show evidence for the fact that a pure max-clique enumeration does not work
in practice, since there are too many maximal cliques that do not correspond to a triangulation but to
a partial triangulation that cannot be extended. The enumeration of all triangulations corresponds
to an enumeration of all vertices of the universal polytope [10]; since no full outer description of this
polytope is available, the vertex enumeration problem for it is non-trivial.

Besides the fact that extension-based algorithms reach all triangulations, there is at least one
other motivation for them: If the search shall be restricted to triangulations using only special sim-
plices (like empty simplices or unimodular simplices), then the flip-based algorithms have to explore
the whole flip-graph and filter ex-post by the wanted triangulations, whereas an extension-based al-
gorithm can exclude the unwanted simplices from consideration right a-priori.

The specialization of reverse-search to feasible subsets of a finite set is probably folklore, but a
specialization exploiting the lexicographic ordering of subsets to enumerate subset orbits was first
formalized (in a different language) in [13].

Let us turn to the contributions of this paper. The top-level method used in this paper consists
of a generic enumeration framework for the enumeration of all orbits of a downset, i.e., a set of sub-
sets closed under taking subsets. This framework is called Symmetric Lexicographic Subset Reverse
Search (SymLexSubsetRS) in this paper. This paper studies three variants of SymLexSubsetRS:
enumerate orbits of maximal elements in a downset, enumerate orbits of minimal elements not
in a downset, and enumerate orbits of feasible antichains in a downset. The generic algorithm
SymLexSubsetRS and the variant for feasible subsets was essentially presented already in [13], and
the method in this paper can be seen as variants, refinements, and new specializations of it and
its subroutines. All applications have been implemented in the TOPCOM package, which is freely
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available under the Gnu Public Licence on the author’s webpage.
The original contributions of this paper are twofold: for the general framework, two alternative

checks of lexicographic minimality of a subset in its orbit (called the lex-min check) are proposed;
for the particular applications, new methods are presented for recognizing that a subset cannot be
extended to a feasible subset by adding larger elements (called the lex-ext check).

Concerning the lex-min check, the first new alternative is the modified switch-table method. It
combines the ideas in [13] with the switch-table method in [7]. This alternative works best for sym-
metry groups whose order is large compared to the degree. The enumeration of circuits and cocir-
cuits is an appropriate use-case.

The second alternative is the critical-element method. It is based on some new theory presented
in Section 4. This alternative is mainly interesting for cases in which the symmetry group is of mod-
erate order, i.e., is given as a list of all permutations in it, and of a degree in the same order of mag-
nitude, i.e., there are at least as many elements as there are permutations. The enumeration of all
triangulations ususally fits into this scheme.

The advantage of both alternatives compared to [13] is that they completely avoid the genera-
tion of additional stabilizer groups inside tight loops. This turned out to be advantageous in the
applications of this paper.

Concerning the lex-ext checks for the applications, the new rank-based rank-pruning accelerates
the enumeration of cocircuits up to symmetry. This allowed the first ever enumeration of all hyper-
planes in the 9-cube C 9 up to symmetry in less than 14 hours. Although it is difficult to tell how
fast the code from [1]would run on today’s computers, TOPCOM’s enumeration algorithm works for
general configurations and does not use any theory about cubes like the algorithm in [1].

For the enumeration of circuits no effective lex-ext check was found so far. Still, the algorithm
could compute some new numbers, among them the numbers of circuits up to symmetry of the hy-
percubes C 6, C 7, and C 8. Note that in order to enumerate circuits one can also enumerate cocircuits
in the Gale-transform (see [5] for more background on this). Whether or not this is faster or slower
usually depends on the rank and the corank of the configuration. Having specialized algorithms for
both means that one can pick the respective faster strategy.

For the enumeration of triangulations up to symmetry, the new lex-ext check lex-pruning is the
single most important progress. It is based on the property of any triangulation that each interior
facet of a simplex is covered by another simplex [5, Cor. 4.1.32]. From this one can derive the rather
tight lex-ext check full-pruning. The new lex-ext check lex-pruning heavily exploits on the lexico-
graphic ordering of all simplices and their interior facets in all data structures involved. While full-
pruning has to check many subset relations, lex-pruning only compares two certain integers. Still it
is almost as effective as full-pruning.

The paper is organized as follows. Section 2 reviews some important notions and algorithms.
Moreover, the the notational conventions are fixed. Section 3 is a short general problem statement
for what the paper tries to achieve. In Section 4 the theoretical considerations for the new lex-
min checks are proven. Section 5 is devoted to the variants of the top-level algorithm and the lex-
min checks that are relevant in general. The discussion of the three application starts in Section 6
with some common preliminaries on point and vector configurations. Then, Sections 8 through 10
present the new results that are relevant for each application individually. Finally, Section 11 con-
tains a summary and some conclusions.

2 Preliminaries

In this section, some basic notions and notation are introduced in the form we will use it. Moreover,
some known algorithms are formulated in our framework.
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Let [n ] denote the set of integers {1, 2, . . . , n}. For k ∈ Z the set of all k -element subsets of [n ] is
written as

�[n ]
k

�

. The power set of [n ] is denoted by 2[n ].

The elements of
�[n ]

k

�

are totally ordered by the (subset-)lexicographic order given by {s1, . . . , sk }<lex

{r1, . . . , rk } if there is a j ∈ [k ]with s j < r j and si = ri for all 1≤ i < j . This total order can be extended
to 2[n ], but this will not be used.

For an undirected graph G = (V , E ) and a node of it v ∈ V the set N (v ) is the set of nodes con-
nected to v by an edge in E . Its cardinality |N (v )| is the degree d (v ) of v ∈ V , and the maximum of
all degrees over all nodes is denoted by d max(G ) (or d max if G is clear from the context).

The symmetric group on n elements is considered as the set of bijections from [n ] to itself. It is
denoted by Sn , and subgroups of it are usually called G. For a subgroup G of Sn and a finite setΩ, a
mapφ : G×Ω→Ω is a (left) group action ofGonΩ ifφ(π ·σ,ω) =φ

�

π,φ(σ,ω)
�

for allπ,σ ∈G and all
ω ∈Ω. Most of the times, certain clearly induced group actionsφ are denoted by π(ω) :=φ(π,ω) for
π ∈G andω ∈Ω, leading to (π ·σ)(ω) = π

�

σ(ω)
�

. Given such a group action, the stabilizer subgroup
ofω ∈Ω in G is Gω := {π ∈G :π(ω) =ω}. The G-orbit ofω is G(ω) := {π(ω) :π ∈G}.

More specifically: For a permutation π ∈Sn and a graph G with node set V = [n ] and edge set
E let π

�

{v, w }
�

=
�

π(v ),π(w )
	

denote the induced action of π on edges, for all edges {v, w } ∈ E .

The definition π(E ) := {π(e ) : e ∈ E } induces a new graph π(G ) =
�

[n ],π(E )
�

on the same node set.
This defines an action of Sn on the set of all graphs on the node set [n ]. The automorphism group
Aut(G ) of a graph G = ([n ], E ) is the set of all π ∈Sn with π(G ) =G . The elements of Aut(G ) are the
symmetries of G .

Similarly, for π ∈ Sn the induced action of π on any k -element subset S = {s1, . . . , sk } ∈
�[n ]

k

�

is

denoted by π(S ) =
�

π(s1), . . . ,π(sk )
	

∈
�[n ]

k

�

. For a subset S = {S1, . . . ,Sm} of 2n the induced action of

π on S is denoted by π(S ) =
�

π(S1), . . . ,π(Sm )
	

. The automorphism group Aut(S ) is the set of all
π ∈Sn with π(S ) =S .

The analogous concept can be used for sets of subsets of [n ]. For example, in one application
there is the induced action of a permutation π ∈ Sn on a triangulation T of a point configuration
with n labeled points given by the label sets of its maximal simplices. That action is denoted byπ(T )
as well.

In the remainder of this section, the general-purpose algorithm Symmetric Lexicographic Subset
Reverse Search (SymLexSubsetRS) is recapitulated in the language of the reverse-search paradigm
from [2]. Starting at the basic Reverse Search, the extensions to orbits and the specializations to
subsets are introduced one-by-one. The algorithms in this section are not new, but a summary of all
variants in a unified notational environment is helpful to understand the extensions.

As a simplification, a recursive form is used for presentation, which usually increases the mem-
ory consumption of the algorithms. However, the more memory-efficient original Reverse-Search
framework (with non-recursive backtracking by pivoting) can be applied to all presented algorithms.
In this paper, recursive implementations have been used throughout, since they were faster in the
presented applications.

First, the original Reverse Search is formulated [2]. Reverse Search (RS) is an algorithm to enu-
merate the nodes of a graph G = (V , E ) with known maximal degree d max. The graph is implicitly
given by an adjacent-nodes function Adj : V × [d max]→V ∪{NULL} that returns for each node v ∈V
and each integer i ∈ [d max] the i th neighbor of v if i ≤ d (v ) and NULL if d (v )< i ≤ d max. A recursive
representation of Reverse Search in pseudo-code is shown in Algorithm 1.

The run-time complexity of RS is O (d maxτ(Adj)|V |+τ(p )|E |), where τ( f ) denotes the maximal
time to compute a function value of a function f . Since 2|E | ≤ d max|V |, this run-time complexity
is in particular in O (d max(τ(Adj) +τ(p ))|V |). This in particularly interesting in the case where τ(Adj)
and τ(p ) do not depend on |V |. In that case, RS is linear in the output size [2].

If one has a groupG acting on G one is usually only interested V up to symmetry. In other words,
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Algorithm: RS(Adj,φ, p , v)
Input: a connected graph G = (V , E )with maximal degree d max, implicitly given by an adjacent-nodes

function Adj : V × [d max]→V ∪{NULL}, a cost functionφ : V →Rwithφ(v ) 6=φ(w ) for all
v 6=w in V andφ(v ∗) =minv∈V φ(v ), a pivot function p : V →N (V )∪{NULL}with
φ
�

p (v )
�

<φ(v ) for all v ∈V \ {v ∗} and p (v ∗) =NULL, a seed node v in V
Output: the number of nodes in V
/* build a depth-first-search tree with root node v: */
c ← 1 ; /* count v */
for j = 1, . . . , d max do /* iterate over neighbors of v */

w ←Adj(v, j ) ; /* get jth neighbor */
if w =NULL then /* if we are past the last neighbor */

break ; /* exit the loop */

if v = p (w ) then /* if w pivots to v */
c ← c +RS(Adj,φ, p , w) ; /* recurse */

return c;

Algorithm 1: The generic reverse search algorithm (cf. [2]); it enumerates the number of
nodes with node-cost function worse than v in a graph that is implicitly given by the adjacent-
nodes function Adj(v, j ) for all nodes v ∈V ; with v = v ∗ the algorithm enumerates V

the number of G-orbits of V is asked for. How the reverse search principle can be adapted to this
setting, was first presented in [6]. The idea is to extend the adjacent-nodes function Adj to G-orbits
in the canonical way and to modify the pivot-function to consist of two steps: In the first step, the
φ-minimal element in the current orbit is taken; in the second step, the φ-reducing pivot-function
on G is followed. Thus, another orbit is reached in case the minimal element of the current orbit
was no global minimum already. Algorithm 2 shows a detailed pseudo-code representation.

A specialized form of Reverse Search arises when a set of “feasible” subsets of a finite shall be
enumerated by adding elements, checking feasibility one-by-one, and back-tracking. This auto-
matically will touch many subsets of feasible sets. Thus, one can restrict to the enumerations of
downsets, i.e., sets of subsets, where each subset of a feasible set is feasible itself. Algorithm 3 shows
the specialization of Reverse Search, which is a folklore observation.

A notable further specialization can be seen in Algorithm 4: by using the natural order for ex-
tending subsets by a new element one can guarantee that the subsets are found in lexicographic
order.

If downsets shall be enumerated up to symmetry, this enumeration in lexicographic order simpli-
fies affairs substantially: Since all subsets appear in lexicographic order, we know that in each orbit
the lex-min element is found first. Thus, if we take the lex-min element in each orbit as the canoni-
cal representative, there is no need for computing canonical representatives for all found elements
anymore. The only thing needed is to check whether or not the found element can be lex-decreased
at all by the action of an element in G. If so, the found element is not canonical, and since canonical
elements are found first, its orbit has been counted already. An important extra-feature is that lex-
leading subsets of a subset that is lex-minimal in its orbit are lex-minimal in their orbits as well (see
Lemma 2 for a formal proof). The resulting algorithm (Algorithm 5) was proposed in [13] together
with suggestions how the lex-min check can be implemented.

With this, the enumeration of subsets up to symmetry is reduced to checking, whether a subset
is lex-min in its orbit, and to checking, whether a subset is feasible. In particular in cases, where the
downset to be enumerated up to symmetry has only been implicitly defined as a downset by a set of
really interesting subsets together with all its subsets, one needs to answer the question, whether or
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Algorithm: SymRS(Adj,φ, p , G, v)
Input: a connected graph G = (V , E )with maximal degree d max, implicitly given by an adjacent-nodes

function Adj : V × [d max]→V ∪{NULL}, a cost functionφ : V →Rwithφ(v ) 6=φ(w ) for all
v 6=w in V andφ(v ∗) =minv∈V φ(v ) , a pivot-function p : V →N (V )∪{NULL}with
φ
�

p (v )
�

<φ(v ) for all v ∈V \ {v ∗} and p (v ∗) =NULL, a subgroup G of Aut(G ) and a
canonical-representative function Canonical(v)=: v̌ withφ(v̌ )<φ(w ) for all w ∈G(v ), a
seed node v̌ in V that is the canonical representative of G(v̌ )

Output: the number of G-orbits in V
/* build a depth-first-search tree with root node v̌: */
c ← 1 ; /* count v̌ */
W̌ ←{v̌ } ; /* collects already processed canonicals */
for j = 1, . . . , d max do /* iterate over neighbors of v̌ */

w ←Adj(v̌ , j ) ; /* get jth neighbor */
if w =NULL then /* if we are past the last neighbor */

break ; /* exit the loop */

w̌ ← Canonical(w) ; /* compute canonical representative */
if w̌ /∈ W̌ then /* if w̌ is new */

u← p (w̌ ) ; /* compute pivot */
ǔ← Canonical(u) ; /* compute canonical representative */
if ǔ = v̌ then /* if G(w ) pivots to G(v̌ ) */

W̌ ← W̌ ∪{w̌ } ; /* add w̌ to set of processed canonicals */
c ← c +RS(Adj,φ, p , G, w̌) ; /* recurse */

return c;

Algorithm 2: The standard application of reverse-search to the graph of all orbits G(v ), where
the canonical representative of each orbit is its φ-minimal element (cf. [6]); two orbits are
connected by an edge whenever at least one (and, thus, each) representative of one orbit is
connected to a representative of the other orbit by an edge in E ; the node-cost function in the
orbit graph is given by the node-cost function on the orbits’ canonical representatives; the
pivot function in the orbit graph is given by the pivots in G of the canonical representatives;
the algorithm enumerates all orbits with worse node costs than the orbit of the seed node v ;
with v = v ∗ = v̌ ∗ it enumerates V up to symmetries in G
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Algorithm: SubsetRS(n,D, S)
Input: n ∈N, a downsetD of 2[n ], a seed set S ∈D
Output: the number of elements S ′ inD with S ⊆ S ′

/* build a depth-first-search tree with root node S: */
c ← 1 ; /* count S */
for j ∈ [n ] \S with j >max(S ) do /* for extensions with new max */

S ′← S ∪{ j } ; /* build new set */
if IsInDownset(S ′,D) then /* if new set belongs to D */

c ← c +LexSubsetRS(n,D, S ’) ; /* recurse */

return c;

Algorithm 3: The standard application of reverse-search to the Hasse-diagram of a downsetD
of subsets of an n-element set, partially ordered by inclusion; it uses forφ(S ) the position of S
in the lexicographic order of 2[n ] and p (S ) = S\{max(S )}; it enumerates all subsets containing S
in a downsetD of the power set 2[n ] of [n ]; with S = ; the algorithm enumeratesD; the perfor-
mance greatly depends on the implementation of theD-membership test IsInDownset

Algorithm: LexSubsetRS(n,D, S)
Input: n ∈N, a downsetD of 2[n ], a seed set S ∈D
Output: the number of elements S ′ inD with S ⊆ S ′

/* build a depth-first-search tree with root node S: */
c ← 1 ; /* count S */
for j =max(S ) +1, . . . , n do /* ordered traversal of new maximal elements */

S ′← S ∪{ j } ; /* build new set */
if IsInDownset(S ′,D) then /* if new set belongs to D */

c ← c +LexSubsetRS(n,D, S ’) ; /* recurse */

return c;

Algorithm 4: An specialized implementation ofSubsetRS(n,D, S) that exploits the straight-
forward set-valued inverse of the pivot function and traverses the pivot-inverse according
to the total order in subsets of [n ]; the result is that the algorithm does not need to scan all
supersets of a subset; moreover, it automatically enumerates all subsets inD containing S in
lexicographic order, and for S = ; it enumeratesD; note that since all finite sets are in one-to-
one correspondence to some [n ] by an arbitrary indexing, this specialization can be used to
enumerate all downsets of subsets of any finite set; the performance greatly depends on the
implementation of theD-membership test IsInDownset
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Algorithm: SymLexSubsetRS(n,D, G, S)
Input: n ∈N, a downsetD of 2[n ], a subgroup G of the automorphism group ofD, a seed set S ∈D
Output: the number of G-orbits inD with S ⊆ S ′

/* build a depth-first-search tree with root node S: */
c ← 1 ; /* count S */
for i =max(S ) +1, . . . , n do /* ordered traversal of new maximal elements */

S ′← S ∪{i } ; /* add a new element on the right */
if IsLexMin(S ′, G) then /* if new set is lex-min in its orbit */

if IsInDownset(S ′,D) then /* if new set belongs to D */
c ← c +SymLexSubsetRS(n,D, G, S ’) ; /* recurse */

return c;

Algorithm 5: A specialized implementation of the combination of LexSubsetRS and SymRS
for orbits of subsets in a downsetD of 2[n ] (cf. [13]); since LexSubsetRS enumerates all sub-
sets in lexicographic order, in each orbit the lexicographically-minimal, i.e., the canonical
subset is found first, and therefore a lex-min check can replace the computation of the canon-
ical subsets; therefore, it automatically enumerates all lex-min representatives of orbits of
subsets in D containing S in lexicographic order, and for S = ; it enumerates D; note that
since all finite sets are in one-to-one correspondence to some [n ] by an arbitrary indexing,
this specialization can be used to enumerate all orbits of downsets of subsets of any finite set;
the performance greatly depends on the implementation of the lex-min checkIsLexMin and
theD-membership test IsInDownset

not a subset is a subset of a really interesting set. This problem arises in all of the applications in this
paper.

The methods proposed in the literature to check whether a subset is lex-min in its orbit all aim at
different use-cases. Some are used in the case of small groups, for which all elements can be easily
precomputed and traversed. For such groups, a taylor-made new method is developed in Section 4.
This turned out to be the fastest method for the enumeration of triangulations, where the typical
orders of automorphism groups are in the thousands.

The lex-min check for groups with a larger order (like in the millions and above), there are a re-
cursive method (for subsets only) proposed in [13] and a switch-table-method (originally for vectors,
which is more general) from [7]. A new combination of the two (for subsets) turned out to be the
fastest method for the enumeration of cocircuits and circuits in our test cases. Thus, switch tables
are briefly introduce next.

Given a subgroup G of Sn a switch table is a function st(·, ·) : [n ]× [n ]→G with either st(i , j ) =π
so that π( j ) = i and π(k ) = k for all k < i , if such a π ∈G exists, and st(i , j ) = id otherwise. A switch
table need not be unique. The entries st(i , j ) are called switches. An entry of a switch table is trivial
if it is the identity. A row of a switch table is effective if it contains at least one non-trivial switch. The
set effRowSet of all row indices i so that st(i , ·) is non-trivial is called the effective row set of st(·, ·).
The (non-empty) set of column indices of non-trivial switches in an effective row i ∈ effRowSet is
the effective column set of i , denoted by effColSet(i ).

One key property of a switch table is that each element of G can be written as an essentially
unique product of switches consisting of at most one switch from each row. The key in the method
to find a lex-smaller element in the orbit of a subset is that not all switches can contribute to a lex-
decreasing switch-product, so that not all products need to be considered. This way, the check actu-
ally traverses significantly (depending on the group action) fewer elements (= suitable switch prod-
ucts) than G has elements. A straight-forward version of the algorithm for subsets is presented in
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Algorithm 6. Details for vectors can be found in [7]. The algorithm uses global auxiliary data, which
is given by a switch table ST= st(·, ·) for G.

Algorithm: IsLexMin_viaSwitches(i ,S ,S ′,G,ST)
Input: an integer i ∈ [1, n ], a subset S (the original subset), a subset S ′ (the subset mapped by a partial

switch product), a subgroup G of Sn , and a switch table ST of G
Output: TRUE if S = lex-minG(S ) and FALSE otherwise
/* check for empty set: */
if S = ; then

return TRUE;

/* are we beyond the effective row set? */
if i >max effRowSet(ST) then

return (S ′ 6<lexS );

/* recursively check a switch product with leading identity: */
if IsLexMin_viaSwitches(i +1,S ,S ′,G,ST)=FALSE then

return (S ′ 6<lexS );

GS←{ j ∈ effColSet(k ) | i /∈ S ′, j ∈ S ′} ; /* switches lex-decreasing S ′ */
if GS= ; then

GS←
�

j ∈ effColSet(k )
�

� |S ′ ∩{i , j }| ∈ {0, 2}
	

; /* neutral switches */

for j ∈GS do
S ′′←ST[i ][ j ](S ′) ; /* map subset */
if S ′′<lex S then

return FALSE ; /* decreasing switch product found */

/* recurse with mapped subset: */
if IsLexMin_viaSwitches(i +1,S ,S ′′,G,ST)=FALSE then

return FALSE;

return TRUE ; /* no decreasing switch product found */

Algorithm 6: The switch-table method from [7] specialized to check whether a subset S ′ can-
not be mapped to a lex-smaller subset than S by the permutations in G stabilizing the ele-
ments {1, . . . , i −1}; for i = 0 and S ′ = S , it checks whether S is lex-min in its G-orbit; its global
data is a switch table for G

3 Problem Statement

In this paper, the following questions concerning the algorithm SymLexSubsetRS and some vari-
ants are studied in detail:

• How can the subroutine IsLexMin of SymLexSubsetRS be implemented efficiently in gen-
eral?

• How can the subroutines of SymLexSubsetRS and variants be implemented efficiently for
each of our applications. More specifically:

– How can one effectively prune subsets of vectors that are not lex-initial segments of a
circuit/cocircuit?

– How can one effectively prune subsets of simplices that are not lex-initial segments of a
triangulation of the point configuration?
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The term efficiently here is not meant in any complexity-theoretic meaning. For the algorithms in
this paper no polynomial general bound could be derived on the complexity in terms of input and
output size so far.

4 Theoretical Foundations

For some of the upcoming arguments the following characterization of the lexicographic order on
k -element subsets of [n ] is used.

Lemma 1 (Lexicographic order on k -subsets). Let n ∈N. Moreover, let S and R be k -element subsets
of [n ]. Then S is lexicographically smaller than R if the minimal element of their symmetric difference
is in S. In formulae:

S <lex R ⇐⇒ min(S4R ) ∈ S , (1)

where min;=∞.

The following lemma states that if subsets are built element-by-element with backtracking and
only the lexicographically minimal ones in their orbits are followed, then one will reach all subsets
that are lexicographically minimal in their orbits. This result was already presented in [13]; here, a
slightly extended proof is shown.

Lemma 2 (cf. [13]). Let S be a subset of [n ] and S− := S \ {maxS}. Then, for all subgroups G of Sn we
have:

S = lex-minG(S )⇒ S− = lex-minG(S−) (2)

Proof. Let S be lex-min in its G-orbit. Assume, for the sake of contradiction, that S− is not lex-min
in its G-orbit. Then, there is a set R which is lex-smaller than S− and a permutation π ∈ G with
π(S−) = R . That means, min(S−4R ) ∈ R . Moreover, π(maxS ) /∈ R . Consider R+ := R ∪ {π(maxS )}.
Since maxS > min(S− \ R ) > min(R \ S−) = min(S− 4 R ) we know that min(S \ R ) > min(S− 4 R ).
Moreover, min

�

S \R+
�

≥min(S \R ). Thus, min(S 4R+) ∈ R+, and, hence, R+ = π(S ) is lex-smaller
than S : a contradiction to the assumption that S is lex-min in its orbit.

The main theoretical question in the general part of this paper is: how can one find out whether
or not a given k -subset is lexicographically minimal in its G-orbit. The known methods work along
variants of strong generating sets of the symmetry group G. They look for words combined from
certain generators that lexicographically decrease a subset. The disadvantage of such methods is
that the action of a word on a subset must be evaluated many times. Each such action requires
either the computation of a product of permutations and the action of the product on a subset or
(better) the repeated computation of the action of a permutation on the subset at hand.

Still: If the symmetry group is very large, generator-set methods are superior. However, the ap-
plications in this paper very often concern smaller symmetry groups that can easily be enumerated
first. How can one reduce the number of evaluations of actions on subsets in that check? Remem-
ber that the orbits’ lexicographically-minimal subsets are built element-by-element. That is, for the
check of whether or not a given k -subset S is lexicographically minimal in its orbit, one can exploit
that its predecessor-subset S− with k −1 elements is already known to be lexicographically minimal
in its orbit. The new question is: has the addition of the new maximal element led to the existence
of a permutation that lexicographically decreases the new subset S in its orbit?

The new idea in this paper is to keep the information about why the predecessor subset S− is
lexicographically minimal in its orbit. The reason is that for each permutation π ∈G one has

min
�

S−4π(S−)
�

/∈π(S−). (3)
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These minimal elements of the symmetric differences of subsets and their images are critical for the
question at hand, which motivates the following definition:

Definition 1. Let n ∈N and G be a subgroup of Sn . For a given k -subset S the critical-element table
with respect to S is defined as follows:

critelemS :

�

G → [n ]∪{∞},
π 7→ min

�

S4π(S )
�

,
(4)

where min; :=∞. The function value critelemS (π) is called the critical element of π with respect
to S .

From the critical-element table, some important of properties of the action of a permutation π
on the given subset S can be read-off easily:

Lemma 3. (i) The stabilizer of S in G is the set of permutations with critical element∞.

(ii) A subset S is lexicographically minimal in its G-orbit if and only if critelemS (π) /∈ π(S ) for all
π ∈G.

(iii) Let S be a non-empty subset of [n ] and S− := S \ {maxS}. Moreover, assume that S− is lexico-
graphically minimal in its G-orbit. Then a permutation π ∈G lexicographically decreases S if
and only if one of the following cases occurs:

I. critelemS− (π) =∞ and π(maxS )<maxS

II. critelemS− (π) ∈ S− and π(maxS )< critelemS− (π) or

III. critelemS− (π) ∈ S−, π(maxS ) = critelemS− (π) and critelemS (π) ∈π(S )

Call the application of this the critical-element method for checking lexicographic minimality of
a subset in its orbit.

The crucial gain of this lemma is the following: given the critical-element table with respect to S−,
one can check lexicographic minimality of S in its orbit without actually computing π(S ), with the
only exception when π maps the new element of S exactly to the critical element of S−. And this
exception roughly happens for a 1

n -fraction of the permutations, on average.
There are now two ways to implement the critical-element method:

1. iterate over all permutations and apply Lemma 3 to each of them (the iteration-based critical-
element method);

2. first, from certain fixed, preprocessed subsets of permutations, compute the subsets of per-
mutations that

(a) certainly lexicographically decrease the given subset, and if empty,

(b) possibly lexicographically decrease the given subset.

If the subset of certainly lexicographically decreasing permutations is non-empty, the subset is
not lexicographically minimal in its orbit; if it is empty, iterate over the possibly lexicographi-
cally decreasing permutations and apply Lemma 3 to only those (the set-based critical-element
method).
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Section 5 presents in detail algorithms for the iteration-based and the set-based method to decide
whether or not a subset is lex-min in its orbit.

In the following, some details for the set-based method are explained.1

The following structures of the symmetry group G facilitate the computation of certainly and
possibly lexicographically decreasing permutations for a specific subset. The first three structures
can be preprocessed prior to the enumeration. The third structure has to be updated for each enu-
meration node.

Definition 2. For n ∈N and a subgroup G of Sn , the hit-element classification of G is defined as

hitclass:

�

[n ]× [n ] → 2G,
(i , j ) 7→ {π ∈G :π(i ) = j }. (5)

The increasing-element classification of G is defined as

incclass:

�

[n ] → 2G,
i 7→ {π ∈G :π(i )> i }=

⋃n
k=i+1 hitclass(i , k ). (6)

The decreasing-element classification of G is defined more detailed as

decclass:

�

[n ]× [n ] → 2G,

(i , j ) 7→ {π ∈G :π(i )< j }=
⋃ j−1

k=1 hitclass(i , k ).
(7)

Moreover, for a subset S of [n ], the critical-element classification of G with respect to S is defined as

critclassS :

�

[n ]∪{∞} → 2G,
i 7→ {π ∈G : critelemS (π) = i }. (8)

The next lemma characterizes lexicographical minimality in an orbit by intersections of certain
decreasing-element and critical-element classifications.

Lemma 4. Let n ∈N andG a subgroup ofSn . Moreover, let S be a subset of [n ], and let S− = S \{maxS}
be lexicographically minimal in its G-orbit. Then S is not lexicographically minimal in its G-orbit if
and only if at least one of the following cases occurs:

I. The set decclass(maxS , maxS )∩ critclassS− (∞) is non-empty.

II. There is an element i ∈ S− such that the set decclass(maxS , i )∩ critclassS− (i ) is non-empty.

III. There is an i ∈ S− and a permutation π in the set hitclass(maxS , i ) ∩ critclassS− (i ) such that
critelemS (π) ∈π(S ).

The set-based method has the advantage that the checks that potentially lead to an immediate
answer can be done prior to the complicated cases, whereas in the iteration method it depends on
the order of the permutations when the complicated cases have to be handled. The disadvantage is
that for large n especially the decreasing-element classification can grow large. For example, if the
order of G is smaller than n , then a brute-force iteration over the elements of G is usually faster than
handling the permutation classifications.

1The approach is motivated by the fact that with a set structure based on dynamic bitstrings it is possible to compute
unions, intersections, differences, and symmetric differences of sets fast in practice. Nota bene: From a complexity stand-
point, bitstrings only gain something if their length is uniformly bounded. However, in practice the reduction of the runtime
by a constant factor by using dynamic bitstrings for set operations is not irrelevant. Moreover, operations on dynamic bit-
strings residing consecutively in memory are more cache coherent than data structures that are scattered in main memory.
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The applications presented in this paper differ in this respect: For enumerating triangulations
(one prominent example ∆6 ×∆2 has |G| = 30,240 and n = 35,721), the iteration method is mostly
faster, whereas for the large cases in the enumeration of circuits and cocircuits (our largest exam-
ple, the cocircuits of the 9-cube C 9, has |G| = 185,794,560 and n = 512) the set-based method is
significantly faster.

The reason why the set-based method does not appear in the computational results of this pa-
per is as follows: For large orders and small degree, an even faster method could be found based on
a tighter specialization of the switch-table method. It works by combining switch tables with the
recursive algorithm in [13]. The theoretical foundation of this is rather straight-forward but nev-
ertheless useful. The recursive algorithm in [13] answers a slightly more general question: for two
given subsets Simg and Sorg with the same number of elements, does there exist a permutation π ∈G
with π(Simg)<lex Sorg? The answer is certainly “no” if the subsets are empty. The answer is “yes” if the
some element of Simg can be mapped to something smaller than the minimal element smin of Sorg.
The answer is “no” if all elements of Simg are mapped by G to something strictly larger than smin. And
if someπ ∈G maps some element k ∈ Simg exactly to smin, the answer is given by answering the same
question recursively for π(Simg) \ {smin}, Sorg \ {smin}, and the group G[smin]. Switch tables allow to run
this recursive algorithm without the computation of new stabilizer groups. Even though, computa-
tional group theory offers efficient algorithms for this, in tight loops, the allocation and deallocation
of memory for new stabilizer groups can slow down the computation.2 Our adaption is based on the
following.

Lemma 5. Consider a switch table st(·, ·) for a subgroup G of Sn . Let 1 ≤ i ≤ n, and let G[i ] be the
point-wise stabilizer of [i ] in G. Moreover, let Sorg and Simg be subsets of [n ] \ [i −1]. Then:

(i) If Sorg = ;, then there is no permutation π ∈G[i ] with π(Simg)<lex Sorg if and only if Simg<lex Sorg.

(ii) IfG is the trivial group or i >max(effRowSet), then there is a permutationπ ∈G[i ]withπ(Simg)<lex

Sorg if and only if Simg<lex Sorg.

(iii) If i ∈ Sorg, then:

(a) If i ∈ Simg and there is a permutation π′ ∈G[i+1] with π′
�

Simg \ {i })
�

<lex Sorg \ {i }, or

(b) if there is a non-trivial switch st(i , ji ) with ji ∈ Simg and a permutation π′ ∈ G[i+1] with

π′
�

st(i , ji )(Simg \ { ji })
�

<lex Sorg \ {i },

then there is a permutationπ ∈G[i ] withπ(Simg)<lex Sorg. If none of these cases occurs, then there
is no permutation π ∈G[i ] with π(Simg)<lex Sorg.

(iv) If i /∈ Sorg, then:

(a) If i ∈ Simg, or

(b) effColSet(i )∩Simg 6= ;, or

(c) there is a permutation π′ ∈G[i+1] with π′
�

Simg

�

<lex Sorg, or

(d) there is a switch st(i , ji )with ji /∈ Simg and a permutationπ′ ∈G[i+1]withπ′
�

st(i , ji )(Simg)
�

<lex

Sorg,

then there is a permutationπ ∈G[i ] withπ(Simg)<lex Sorg. If none of these three cases occurs, then
there is no permutation π ∈G[i ] with π(Simg)<lex Sorg.

2A very basic attempt to implement the original algorithm from [13] based on the publicly available permlib led to a
substantially slower runtime than the implementation based on switch tables from [7].
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In particular, for i = 1 and Simg = Sorg these conditions characterize whether there is a permutation
π ∈G with π(Sorg)<lex Sorg, i.e., whether Sorg is not lex-min in its orbit.

Proof. There is a permutation π ∈ G[i ] with π(Simg)<lex Sorg if and only if there is a switch product

st(n , jn ) . . . st(i , ji )with
�

st(n , jn ) . . . st(1, j1)
�

(Simg)<lex Sorg, by [7].
Case (i) and (ii) are straight-forward.
Case (iii)(a) is formally required to account for the identity switch in row i ; the argumentation is

then the same as for the next case. In case (iii)(b), consider the case when there is a switch st(i , ji )
with ji ∈ Simg and a permutation π′ ∈ G[i+1] with π′

�

st(i , ji )(Simg \ { ji })
�

<lex Sorg \ {i }. Consider π :=
π′ ·st(i , ji ). Then, π( ji ) = i = min(Sorg), since π′ ∈ G[i+1] stabilizes i . Because ji ∈ Simg, we have
π(Simg)<lex Sorg if and only ifπ′(Simg \{ ji })<lex Sorg \{i }, which is the case by the choice ofπ′. If there is
no switch st(i , ji )with ji ∈ Simg, then all switch products st(n , jn ) . . . st(i , ji )map all elements of Simg to
elements strictly larger than i =min(Sorg), and Sorg is therefore strictly lex-smaller than any subset in
theG[i ]-orbit of Simg. If, moreover, for all switches st(i , ji )with ji ∈ Simg theG[i+1]-orbit of st(i , ji )(Simg\
{ ji }) contains no lex-smaller element than Sorg \ {i }, then no switch product st(n , jn ) . . . st(i , ji ) with
ji ∈ Simg can lex-decrease Simg below Sorg.

In case (iv)(a) the minimal element of Sorg is strictly larger than the minimal element i of Simg,
thus Simg <lex Sorg so that π = id will do the job. In case (iv)(b) there is a switch st(i , ji )mapping an
element of Simg to a smaller element than min(Sorg)> i , so π= st(i , ji ) = id . . . id ·st(i , ji )maps Simg to
a lex-smaller subset than Sorg. The cases (iv)(c) and (d) are essentially analogous to case (iii)(a) and
(b).

The final assertion follows from backward induction on i , rooted at the case i = n with the trivial
group G[n ].

Call the application of this the modified switch-table method for checking lexicographic minimal-
ity of a subset in its orbit. Section 5 presents an algorithm in detail using the modified switch-table
method to decide for large group orders whether or not a subset is lex-min in its orbit.

5 Algorithms

In this section, the following are introduced:

• Variants of SymLexSubsetRS (Algorithm 5 in Section 2) supporting global and local auxiliary
data, counting only maximal elements, minimal non-elements, and feasible elements, resp.,
and utilizing semi-deciding algorithms to prune the enumeration

• Three new ways to implementIsLexMin(S, G) inSymLexSubsetRS(n,D, G, S). Recall that
this subroutine checks whether or not S ′ is lex-min in its orbit.

First, the algorithmSymLexSubsetRS_withData(n,D, G, G, N ) is presented, which is a slightly
modified form of SymLexSubsetRS(n,D, G, S). The reason is that for most non-trivial problems
auxiliary data has to be computed and to be kept in memory somehow. The are two principal ways
auxiliary data can be made available. Data that depends on the current subset in the reverse-search
tree is contained together with the subset in a node in the reverse-search tree. Data independent of
the subset can be stored globally, e.g., together with the problem data.

To keep track of this in the following, specify by N = (SN , LN ) a node in the reverse-search tree
consisting of a subset SN ∈ 2[n ] and a subset-specific collection of data LN , which formally is just a
tupel of mathematical objects. The global collection of data is denoted by G.

Any implementation ofSymLexSubsetRS_withDatamust specify the exact structure of L and G.
It is desirable that the local data for a new node can be computed during one or both of the rather
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expensive subroutines IsLexMin and IsInDownset. A possible such layout can be seen in Algo-
rithm 7.

Algorithm: SymLexSubsetRS_withData(n,D, G, G, N )
Input: n ∈N, a downsetD of 2[n ], a subgroup G of the automorphism group ofD, global auxiliary data

G, a node N = (S , L)with S ∈D and L local auxiliary data
Output: the number of G-orbits of subsets inD containing S
/* build a depth-first-search tree with root node N = (S , L): */
c ← 1 ; /* count S */
for i =max(S ) +1, . . . , n do /* ordered traversal of new maximal elements */

S ′← S ∪{i } ; /* add a new element on the right */
default initialize L′ ; /* prepare a local data structure */
(answer, L′)← IsLexMin(S ′,G, G, L, L′) ; /* lex-min check */
if answer=FALSE then /* if new set is not lex-min in its orbit */

continue ; /* next loop element */

(answer, L′)← IsInDownset(S ′,D, G, L, L′) ; /* membership check */
if answer=FALSE then /* if new set is not in D */

continue ; /* next loop element */

N ′← (S ′, L′) ; /* build new node */
c ← c +SymLexSubsetRS_withData(n,D, G, G, N ′) ; /* recurse */

return c;

Algorithm 7: A variant of symmetric lexicographic subset reverse search with explicit use of
global and local auxiliary data; the global data G is either preprocessed prior to the first call of
the algorithm with S = ; or lazily updated as we go along; the local data L is generated during
the crucial subroutines; the subroutine calls have been organized on the same level so that it
is easy to flip their order or even interleave their individual steps if appropriate

At times, not the cardinality of the downsetD is of interest but only the cardinality of its maximal
elements. This is, e.g., the case for two applications (cocircuits and triangulations). In such situ-
ations, the downset D is only implicitly defined as the downset of all subsets of the subsets one is
really interested in. This models the process building interesting objects from scratch element-by-
element. In the ordered reverse-search tree of subsets considered in the algorithms so far, elements
are always added to subsets that are larger than the current maximal element. Therefore, the follow-
ing notions are defined:

Definition 3. For a subset S ∈ D an expansion of S is an element i ∈ [n ] \ S so that S ∪ {i } ∈ D. A
right-expansion is an expansion i with i >maxS . The subset S is maximal if there is no expansion
for it, and it is right-maximal if there is no right-expansion for it. The subset S is right-completable
if there is a maximal set S ′ that is maximal inD so that i < j for all i ∈ S and j ∈ S ′ \S .

Algorithm 8 shows how to deal with situations like this. It might appear that the leaves of the enu-
meration tree automatically correspond to maximal subsets inD. This, however, is unfortunately not
the case – the leaves are, by construction, only right-maximal: Consider an arbitrary maximal non-
empty subset S inD. Then, e.g., the enumeration branch starting with the second smallest element
in S will have S \minS as one of its leaves, which is obviously not maximal in D . Thus, a maximality
check has to be performed on the leaves, and non-maximal leaves are simply ignored for the count.
Sometimes the reverse-search tree can be pruned by semi-deciding whether or not a subset can be
right-completed. The subroutine SemiIsNotRightComp in Algorithm 8 takes care of that. When-
ever it can be detected locally that an expansion is unavoidable on the path to a maximal subset,
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one can skip the traversal of supersets not containing it. This idea is supported by the subroutine
IsInEachMax.

Algorithm: SymLexSubsetRSMax_withData(n,D, G, G, N )
Input: n ∈N, a downsetD of 2[n ], a subgroup G of the automorphism group ofD, global auxiliary data

G, a node N = (S , L)with S ∈D and L local auxiliary data
Output: the number of G-orbits of maximal subsets inD containing S
/* build a depth-first-search tree with root node S */
c ← 0 ; /* do not count S yet */
for i =max(S ) +1, . . . , n do /* ordered traversal of new maximal elements */

S ′← S ∪{i } ; /* add a new element on the right */
default initialize L′ ; /* prepare a local data structure */
(answer, L′)← IsLexMin(S ′,G, G, L, L′) ; /* lex-min check */
if answer=FALSE then /* if new set is not lex-min in its orbit */

continue ; /* next loop element */

(answer, L′)← IsInDownset(S ′,D, G, L, L′) ; /* membership check */
if answer=FALSE then /* if new set is not in D */

continue ; /* next loop element */

(answer, L′)← SemiIsNotRightComp(S ′,D, G, L, L′) ; /* incomp. comp. check */
if answer=TRUE then /* if new set is not right-completable */

continue ; /* next loop element */

N ′← (S ′, L′) ; /* build new node */
c ← c +SymLexSubsetRSMax_withData(n,D, G, G, N ′) ; /* recurse */
(answer, L′)← IsInEachMax(S ′,D, G, L, L′) ; /* check unavoidability of i */
if answer=TRUE then /* if new set is not right-completable */

break ; /* exit the loop */

if c > 0 then /* if we found supersets in D */
return c ; /* return no. of max. supersets of S in D */

if IsMaxInDownset(S, G, L) then /* if S is maximal in D */
return 1 ; /* return the count for S */

Algorithm 8: A variant of symmetric lexicographic subset reverse search for maximal subsets
with explicit use of global and local auxiliary data; the subroutine SemiIsNotRightComp
can prune the consideration of a subset if it is certainly not right-completable; the subrou-
tine IsInEachMax checks whether each maximal superset of S contains i ; the subroutine
IsMaxInDownset decides whether or not the seed node is maximal inD; since it may be an
expensive check returning “FALSE” quite often, we chose to call it only for subsets that are
right-maximal

Other applications are rather interested in objects that can be better represented as the minimal
subsets not contained in a downset.

Definition 4. For a subset R ∈ 2[n ] \D a reduction of R is an element i ∈ R so that S \ {i } ∈ 2[n ] \D.
The subset R is co-minimal w.r.t. D if it contains no reduction. It is right-co-minimal if its maximal
element is not a reduction. The subset R is right-exitable w.r.t. D if there is a co-minimal set S ′ so
that i < j for all i ∈ S and j ∈ S ′ \S .

Our application to enumerate circuits is an example for such a use-case. The straight-forward
idea for a reverse-search algorithm is to adapt SymLexSubsetRSMax_withData: add elements un-
til the first non-member is met and check afterwards if the resulting set is a minimal non-member.
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The subroutine SemiIsNotRightExit can help to prune the tree. For the enumeration of circuits
as in Section 9 there is no sensible such option known, but for other application there may be one.

Algorithm: SymLexSubsetRSComin_withData(n,D, G, G, N )
Input: n ∈N, a downsetD of 2[n ], a subgroup G of the automorphism group ofD, global auxiliary data

G, a node N = (S , L)with S ∈D and L local auxiliary data
Output: the number of G-orbits of co-minimal subsets ofD containing S
/* build a depth-first-search tree with root node S */
c ← 0 ; /* as a member, S cannot be co-minimal */
for i =max(S ) +1, . . . , n do /* ordered traversal of new maximal elements */

S ′← S ∪{i } ; /* add a new element on the right */
default initialize L′ ; /* prepare a local data structure */
(answer, L′)← IsLexMin(S ′,G, G, L, L′) ; /* lex-min check */
if answer=FALSE then /* if new set is not lex-min in its orbit */

continue ; /* next loop element */

(answer, L′)← IsInDownset(S ′,D, G, L, L′) ; /* membership check */
if answer=FALSE then /* if new set is right-co-minimal */

if IsCominOfDownset(S ′, G, L, L′) then /* if set is co-minimal */
c ← c +1 ; /* count S ′ */
continue ; /* next loop element */

(answer, L′)← SemiIsNotRightExit(S ′,D, G, L, L′) ; /* incomp. exit. check */
if answer=TRUE then /* if new set is not right-exitable */

continue ; /* next loop element */

N ′← (S ′, L′) ; /* build new node */
c ← c +SymLexSubsetRSComin_withData(n,D, G, G, N ′) ; /* recurse */

return c ;

Algorithm 9: A variant of symmetric lexicographic subset reverse search for co-minimal
subsets with explicit use of global and local auxiliary data; we need a subroutine
IsCominOfDownset that decides whether all subsets of S are in D, since the enumeration
tree only extends subsets to the right, i.e., the first found subset not in D is not necessarily
minimal w.r.t. arbitrary subsets; the subroutineSemiIsNotRightExit can be used to prune
the reverse-search tree as soon as it is clear thatD cannot be exited by adding elements to the
right

Occasionally, the representation of interesting objects as the maximal or co-minimal elements
of a downset leads to a very difficult membership test. For example, it is NP-complete to decide
whether or not a set of simplices can be extended to a triangulation. See Section 10 for more de-
tails. Then, it can be preferable to travers a downset with simpler membership test that contains all
feasible subsets and check for extendability to a feasible subset separately.

In the following, distinguish for a subset S of a feasible subset between an expansion (see Defini-
tion 3) of S by an element, which remains inD, and an extension of S by an element, which remains a
subset of a feasible subset. Most interesting is the case where the feasible subsets form an antichain
in [n ], i.e., no feasible subset contains any other feasible subset.

Definition 5. LetF be an antichain in 2[n ]. Members ofF are called feasible subsets. Each S ∈F rep-
resents a solution. Extendable subsets are subsets of feasible subsets. A subset S is right-extendable
if it is extendable to a feasible subset S ′ so that i < j for all i ∈ S and j ∈ S ′ \S .

If the membership check in the downset is simple enough, then the iteration over all new max-

18



imal elements followed by membership tests can lead to an unnecessarily large number of loop
passes. In such cases it may be possible to compute all possible right-expansions of a subset be-
fore the loop and iterate only over those. The following notion supports this idea.

Definition 6. The right-expansion sequence E (S ) of S is the sequence i1 < · · · < i|E (S )| of all ik , k =
1, . . . , |E (S )|, with S ∪{ik } ∈D.

For the enumeration of feasible subsets with expensive exact extendability check it is desirable
to prune the enumeration tree as soon as one knows that a subset is not right-extendable. This
way, the possibly expensive exact extendability checks can be restricted to promising candidates,
whereas at all other enumeration nodes only incomplete checks are performed. This paper suggests
an incomplete check that returns TRUE if a subset is not extendable to the right and FALSE if the
subset might be extendable to the right. Algorithm 10 shows a possible pseudo-code for this method
that will be used in the enumeration of all triangulations of a point configuration in Section 10.

Algorithm: SymLexSubsetRSFeas_withData(n,D,F , G, G, N )
Input: n ∈N, a downsetD of 2[n ], a subsetF ⊆D of feasible subsets, a subgroup G of the

automorphism group ofD, global auxiliary data G, a node N = (S , L)with S ∈D, and L local
auxiliary data encompassing the right-expansion sequence E (S )

Output: the number of G-orbits of feasible subsets inD containing S
if IsFeasible(S ,F , G, L) then /* if S is feasible */

return 1 ; /* count S */

/* build a depth-first-search tree with root node S */
c ← 0 ; /* do not count S yet */
for j = 1, . . . , |E (S )| do /* ordered traversal of right-expansions */

default initialize L′ ; /* prepare a local data structure */
(break,S ′, L′)← Expand(S , E (S ) j , G, L, L′) ; /* expand to the right inside D */
if break=TRUE then /* if expansion returns to stop */

break ; /* exit loop */

(answer, L′)← IsLexMin(S ′,G, G, L, L′) ; /* lex-min check */
if answer=FALSE then /* if new set is not lex-min in its orbit */

continue ; /* next loop element */

(answer, L′)← SemiIsNotRightExt(S ′,D,F , G, L, L′) ; /* incomp. ext. check */
if answer=TRUE then /* if new set is certainly not ext. t.t.r. */

continue ; /* next loop element */

N ′← (S ′, L′) ; /* build new node */
c ← c +SymLexSubsetRSFeas_withData(n,D, G, G, N ′) ; /* recurse */

return c ;

Algorithm 10: A variant of symmetric lexicographic subset reverse search for feasible subsets
with pruning by an incomplete extendability check; the subroutine IsFeasible checks fea-
sibility of a subset; the subroutine Expand computes not only the subset resulting from the
union with a right-expansion, but also the expansion sequence of the new subset, stored with
the node’s local data; moreover, it can return “break = TRUE”, if the current and the future
expansions cannot lead to a feasible subset anymore; SemiIsNotRightExt semi-decides
whether or not the seed node is extendable to the right, i.e., for any “TRUE” answer we know
for sure that S is not extendable to the right (no need to recurse), and for any “FALSE” answer
we do not know yet (we have to recurse)

Next, the findings from Section 4 are used to specify suitable local data to accelerate the lex-min
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check in orbits. In particular, the critical-element-table critelemS of a subset will be used as local
data stored together with S in a node. It can be seen that one can update the critical-element table
for the next node during its usage in the lex-min check.

First, the iterative method IsLexMin_viaIter(S ′,G, G, L, L′) is described, where L contains
CET, which is a function-value table of critelemS . It neither needs global data G nor the initialized
local data L′ for S ′. The updated critical-element table of S ′ is stored in L′ := CET′ representing a
function-value table of critelemS ′ . It iterates over the whole symmetry group but is quite lean inside
the loop. Algorithm 11 shows a possible listing in pseudo-code.

Algorithm: IsLexMin_viaIter(S ′, G, CET)
Input: a set S ′, a subgroup G of Sn , and the critical-element table CET= critelemS of S = S ′ \maxS ′

Output: (TRUE,CET′ = critelemS ′ ) if S ′ = lex-minG(S ′) and (FALSE,−) otherwise
CET′←CET ; /* copy the old critical-element table */
for π ∈G do /* iterate over G */

j ←CET[π] ; /* retrieve critical element */
if j =∞ then /* if π stabilizes S */

if π(maxS ′)<maxS ′ then /* if π decreases maxS ′ */
return (FALSE,−) ; /* π is lex-decreasing */

else if π(maxS ′)>maxS ′ then /* if π increases maxS ′ */
CET′(π)←maxS ′ ; /* update critical element */

else /* π strictly lex-increases S */
if π(maxS ′)< j then /* if π decreases maxS ′ beyond j */

return (FALSE,−) ; /* π is lex-decreasing */

else if π(maxS ′) = j then /* if π maps maxS ′ to critical element */
j ′←min

�

S ′4π(S ′)
�

; /* compute critical element of S ′ */
if j ′ ∈π(S ′) then /* if new critical element is in π(S ′) */

return (FALSE,−) ; /* π is lex-decreasing */

else /* if new critical element is not in π(S ′) */
CET′[π]← j ′ ; /* update critical-element table */

return (TRUE,CET′);

Algorithm 11: The iteration-based critical-element method with simultaneous generation of
the new critical-element table of S ′; the data structures CET and CET′ for the critical-element
tables of S and S ′, resp., must be stored with the subset S and S ′ during the enumeration

Next, the set-based variant IsLexMin_viaSets(S ′,G, G, L, L′) is described, where L contains
CEC, which is a function-value table of critclassS . Global data G containing (HEC, IEC,DEC) are
needed, which are function-value tables for hitclass, incclass, and decclass, respectively. It does not
need the initialized local data L′ for S ′. Algorithm 12 shows the pseudo-code for this.

Whenever the group order becomes very large, then a generator-based method can become nec-
essary. Using Lemma 5 from Section 4 Algorithm 13 proposes a new method that combines the ideas
from [7] with the ideas from [13]. The advantage compared to Algorithm 6 is that it recursively re-
moves elements from the subsets that play no role in the lex-comparison. The advantage compared
to the algorithm in [13] is that one only uses a single group representation, namely a switch table.
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Algorithm: IsLexMin_viaSets(S ′,G, (HEC, IEC,DEC),CEC)
Input: a set S ′, a subgroup G of Sn represented by its hit-element, increasing-element, and

decreasing-element classifications HEC, IEC, and DEC, the critical-element classification
CEC= critclassS of S = S ′ \maxS ′

Output: (TRUE,CEC′ = critclassS ′ ) if S ′ = lex-minG(S ′) and (FALSE,−) otherwise
if DEC[maxS ′][maxS ′]∩CEC[∞] 6= ; then /* check for case I */

return (FALSE,−) ; /* S ′ is not lex-min */

if ∃i ∈ S : DEC[maxS ′][i ]∩CEC[i ] 6= ; then /* check for case II */
return (FALSE,−) ; /* S ′ is not lex-min */

CEC′←CEC ; /* copy the old critical-element classification */
for j ∈ S do /* iterate over S */

for π ∈CEC[ j ]∩HEC[maxS ′][ j ] do /* check j for case III */
j ′←min

�

S ′4π(S ′)
�

; /* compute critical element of S ′ */
if j ′ ∈π(S ′) then /* if new critical element is in π(S ′) */

return (FALSE,−) ; /* π is lex-decreasing */

else /* if new critical element is not in π(S ′) */
CEC′[ j ]←CEC′[ j ] \ {π} ; /* update classification */
CEC′[ j ′]←CEC′[ j ′]∪{π} ; /* update classification */

for π ∈ IEC[maxS ′]∩CEC[∞] do /* for permutations no longer stabilizing */
CEC′[∞]←CEC′[∞] \ {π} ; /* update classification */
CEC′[maxS ′]←CEC′[maxS ′]∪{π} ; /* update classification */

return (TRUE,CEC′);

Algorithm 12: The set-based critical-element method with simultaneous generation of the
new critical-element classification of S ′; the data structures CEC and CEC′ for the critical-
element classification of S and S ′, resp., must be stored as local data with the subset S and S ′

during the enumeration; the data structures HEC, IEC, and DEC do not depend on the subset
and are therefore global data; the advantage is that the easy cases I and II are checked prior
to the difficult case III from Lemma 4; fast implementations of set-operations are mandatory
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Algorithm: IsLexMin_viaSwitchesMod(i ,S ,S ′,G,ST)
Input: an integer i ∈ [1, n ], a subset S (the original subset), a subset S ′ (the subset mapped by a partial

switch product), a subgroup G of Sn , and a switch table ST of G
Output: TRUE if S = lex-minG(S ) and FALSE otherwise
/* check for empty set: */
if S = ; then

return TRUE;

if G trivial then
return (S ′ 6<lexS );

/* are we beyond the effective row set? */
if i >max effRowSet(ST) then

return (S ′ 6<lexS );

/* case distinction whether i ∈ S: */
if i ∈ S then

if i ∈ S ′ then
/* recursively check a switch product with leading identity: */
if IsLexMin_viaSwitchesMod(i +1,S \ {i },S ′ \ {i },G,ST)=FALSE then

return FALSE;

/* travers all switches mapping an element of S ′ to i: */
for j ∈ effColSet(i )∩S ′ do

if IsLexMin_viaSwitchesMod(i +1,S \ {i },ST[i ][ j ]
�

S ′ \ { j }
�

,G,ST)=FALSE then
return FALSE;

return TRUE ; /* no decreasing switch product found */

else
/* compare minimal elements using min(S )> i: */
if i ∈ S ′ then

return FALSE;

/* check for a switch mapping an element of S ′ to i: */
if effColSet(i )∩S ′ 6= ; then

return FALSE;

/* recursively check a switch product with leading identity: */
if IsLexMin_viaSwitchesMod(i +1,S ,S ′,G,ST)=FALSE then

return FALSE;

/* travers all switches mapping a non-element of S ′ to i: */
for j ∈ effColSet(i ) \S ′ do

if IsLexMin_viaSwitchesMod(i +1,S ,ST[i ][ j ](S ′),G,ST)=FALSE then
return FALSE;

return TRUE ; /* no decreasing switch product found */

Algorithm 13: The modified switch-table method using a combination of the specialized
switch-table method of Algorithm 6 based on [7] with the recursive method in [13]; it checks
whether a subset S ′ cannot be mapped to a lex-smaller subset than S by the permutations
in G stabilizing the elements {1, . . . , i −1}; for i = 0 and S ′ = S , it checks whether S is lex-min
in its G-orbit; its global data is a switch table for G

22



6 Applications: Common Preliminaries

In this section, some basic notions and notation are summarized for the common setup of the ap-
plications presented in the upcoming sections.

Consider a point or vector configuration of rank r with n points or vectors. It is represented by
an r × n-matrix A containing the (homogeneous) coordinates a1, . . . , an ∈ Rr of the points or vec-
tors as columns. For a subset S of column indices of A denote by A∗,S the submatrix consisting of
the columns with indices in S . Moreover, for a matrix M denote by MNZ its submatrix of non-zero
columns.

The usual language of linear algebra can be adapted to subsets.

Definition 7. A subset B ∈ [n ] is spanning if rank(A∗,B ) = r , otherwise it is not-spanning or coplanar.
A coplanar subset B with rank B = r −1 is hyperplanar. It is independent if rank(A∗,B ) = |B |, otherwise
it is dependent. A basis (or a simplex in the context of triangulations) is an independent spanning
subset. An r − 1-subset of a simplex is a simplex facet or simply facet whenever no confusion with
facets of A can arise.

The first application deals with cocircuits, which can be seen as hyperplanes spanned by the
configuration.

Definition 8. Any inclusion-maximal coplanar subset C ∗0 of column indices of the configuration A
is called (the zero part of) a cocircuit. A cocircuit signature of C ∗0 is a map σ∗ : [n ] → {−, 0,+} with
C ∗0 =σ

−1({0}) so that there is a c ∈Rr with cT ai = 0 for all i ∈ (σ∗)−1(0), cT ai > 0 for all i ∈ (σ∗)−1(+),
and cT ai < 0 for all i ∈ (σ∗)−1(−). Here, C ∗+ := (σ∗)−1(+) is called the positive part, C ∗− := (σ∗)−1(−)
the negative part of the cocircuit signature σ∗. By elementary linear algebra, there are exactly two
opposite cocircuit signatures of C ∗0 . Moreover, these two signatures are uniquely determined by any
hyperplanar subset of C ∗0 . The pair (C ∗+, C ∗−) is a signed cocircuit.

Intuitively, a cocircuit is the subset of all elements lying on a hyperplane spanned by some of the
elements in A. Counting all cocircuits is, therefore, the same as counting all hyperplanes spanned
by elements of the configuration.

Another application is concerned with circuits, which can be seen as intersection points of sub-
spaces spanned by the configuration.

Definition 9. Any inclusion-minimal dependent subset C of the column indices of A is (the support
of) a circuit. A circuit signature of a circuit C is a map σ : [n ] → {−, 0,+} so that C = σ−1({−,+})
and

∑

i∈σ−1(+)λi ai =
∑

i∈σ−1(−)λi ai for suitable λi > 0, i = 1, 2, . . . , n . Here, C+ := σ−1(+) is called the
positive part, C− :=σ−1(−) the negative part, and C0 :=σ−1(0) the zero-part of the circuit signatureσ.
By elementary linear algebra, there are exactly two opposite circuit signatures of C . The pair (C+, C−)
is a signed circuit.

The third application in this paper deals with triangulations of A. It is advantageous to use a well-
known characterization of triangulations of point configurations as the definition [5, Cor. 4.1.32]. In
the context of triangulations, bases are usually called simplices.

Definition 10. Two simplices S1 and S2 are intersecting properly if there is no signed circuit C with
C+ ⊆ S1 and C− ⊆ S2. A simplex facet F is interior if there is a cocircuit C ∗0 with F ⊆ C ∗0 so that C ∗+
and C ∗− are non-empty. A non-empty subset T of simplices is covering if for each interior facet F of
some simplex S ∈ T there is another simplex S ′ ∈ T containing F . A triangulation is a non-empty
covering subset T of pairwise properly intersecting simplices.

Proper intersection of two simplices S1 and S2 roughly means geometrically that the convex hulls
conv A∗,S1

and conv A∗,S2
intersect in a common (possibly empty) face. The covering property roughly

means geometrically that no interior facet of a simplex is uncovered.
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7 Applications: Computational Environment

For all computational tests a C++-implementation in TOPCOM version 1.0.18 was used, which is
essentially equivalent to TOPCOM version 1.1.0 that is distributed together with this paper. See [14]
for a paper on an earlier version of TOPCOM.

Two computers were used to generate the computational results. The main computer was a In-
tel(R) Xeon(R) CPU E5-2690, 2.90GHz (384 GB RAM) with 2 sockets of 8 cores each and two vir-
tual threads per core. The operating system was Ubuntu Linux 4.15.0-162-generic with the
C++compiler gcc (Ubuntu 7.5.0-3ubuntu1 18.04) 7.5.0. Unless state otherwise, for each
run 16 threads were used since hyper-threading has no advantages for computationally demanding
tasks.

Triggered by a downtime of this machine over several months, also an Apple MacBookPro (2021)
was used with M1Max (64 GB RAM) with 8 performance cores and 2 efficiency cores. The operating
system wasMacOSX Monterey 12.3.1with the C++-compilerApple clang version 13.1.6.
Unless stated otherwise, this computer was run with 8 threads. Computational results achieved with
this computer are marked with “M1Max”.

8 Application I: Cocircuits

In this section, specializations of the subroutines in Algorithm 8 are specified for the enumeration
of cocircuits of a (point or vector) configuration. The idea is as follows:

• As the downsetD take the downset of all coplanar subsets S .

• Its maximal subsets correspond to the (zero sets of) cocircuits.

• For subsets S inD that are right-maximal, first check whether the corresponding columns of A
span a subspace of rank r − 1. If no, the subset is not maximal in D. If yes, compute its (up
to sign-reversal) unique signature. The subset is then maximal in D if and only if no element
outside S has a zero-signature.

• In order to prune the search, check for each subset

– whether an earlier element is contained in the generated space;

– whether the remaining elements are sufficient to generate a space of corank one.

In order to make this idea for an application of SymLexSubsetRSMax_withData explicit, its
subroutines IsInDownset, SemiIsNotRightComp, IsInEachMax, and IsMaxInDownset must
be formally specified. Recall that in these subroutines one can utilize global data (preprocessed
prior to the enumeration) and local data (updated in each enumeration node) to speed up the com-
putations and avoid duplicate work.

In this particular case, the part of the local data L used by IsMaxInDownset encompasses a
matrix M that is a column-echelon form of AS . It can be computed by Gaussian elimination on
columns from left to right. Storing it allows us to avoid the repetition of identical eliminations in
matrices with identical initial segments of columns. The local data of the node of a subset S ′ with
S = S ′ \maxS is initialized as the augmented matrix (M, A∗,maxS ). The global data used is the full
matrix A.

The implementation of SemiIsNotRightComp in Algorithm 15 is based on the following theo-
rem.

Theorem 1. Let S be right-completable to a (the zero-set of a) cocircuit C ∗0 of A. Then:
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Algorithm: IsInDownset(S ′,D, A,M,M′)
Input: A subset S ′ of column indices of A, the downsetD of coplanar subsets, the configuration A, a

column-echelon form M of A∗,S ′\maxS ′ , and the augmented matrix M′ = (M, A∗,maxS ′ ) (not yet in
column-echelon form, in general)

Output: (TRUE,M′)with M′ a column-echelon form of A∗,S ′ if rank(M′)≤ r −1 and (FALSE,M′)
otherwise

M′← colechForm(M′) ; /* compute column-echelon form */
if |S ′|< r or M′

∗,r = 0 then /* if at most r −1 non-zero columns */
return (TRUE,M′) ; /* S is coplanar */

else
return (FALSE,M′) ; /* S is spanning */

Algorithm 14: Check whether a subset of columns is coplanar; the local data M′ of S ′ is com-
puted here; because the local data M of S is already in column-echelon form, the subrou-
tine colechForm needs to update at most rank(M) many values in the right-most column
of (M, AmaxS ′ ), possibly after a single swap of two columns

1. For the set R := {i ∈ [n ] : i >maxS} the rank bound rank(A∗,S∪R )≥ r −1 holds.

2. For all i ∈ [n ] \S with i <maxS the rank bound rank(A∗,S )< rank(A∗,S∪{i }) holds.

Proof. For item 1 assume that S is right-completable to a maximal and, thus, maximally hyperplanar
subset S ′ with rank(A∗,S∪R ) < r − 1. Then, since S ′ \S ⊆ R , we have rank(A∗,S ′ ) < r − 1, contradicting
the fact that S ′ is hyperplanar.

For item 2 assume there is an i ∈ [n ] \ S with i < maxS so that rank(A∗,S ) = rank(A∗,S∪{i }), and
assume there is a maximal hyperplanar subset S ′ that is a right-completion of S . Then, i is not in S ′,
and rank(A∗,S ′∪{i }) = rank

�

A∗,(S ′\S )∪(S∪{i })
�

= rank
�

A∗,(S ′\S )∪S

�

= rank(A∗,S ′ ), contradicting the maximality
of S ′.

Call the use of the semi-check based on this theorem rank-pruning; skipping this semi-check is
called no-pruning for later reference. In Table 1 the node counts for no-pruning and rank-pruning
are compared for tiny to small examples.

In order to find out whether an expansion is in each maximal superset, one can use a similar
observation: any element that does not increase the rank of the current subset can be added to each
rank-(r − 1) subset without increasing the rank. Thus, it is in each maximal superset. The pseudo-
code is listed in Algorithm 16. All data necessary for this check has been computed before. Thus,
this check is very fast, and there is no point in skipping it.

In order to implement the maximality check one has to compute a signature corresponding to a
hyperplanar subset. This can be done as follows.

Lemma 6. Let S be a hyperplanar subset and let B be the r × (r −1)-matrix of non-zero-columns of a
column-echelon form of A∗,S . Then, there is a unique cocircuit C ∗0 containing S. Moreover, one of the
two opposite signatures of C ∗0 is given by

σ∗S (i ) = sign
�

det(B, ai )
�

. (9)

In particular, S is maximal and, thus, a cocircuit if and only if det(B, ai ) 6= 0 for all i ∈ [n ] \S.

Proof. The assertion follows from the fact that the right-hand side is the sign of a linear form in
a1, . . . , ar that vanishes on all points in A∗,S , which was assumed to be hyperplanar.
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Algorithm: SemiIsNotRightComp(S ′,D, A,M,M′)
Input: A subset S ′ of column indices of A, the downsetD of coplanar subsets, the configuration A, a

column-echelon form M of A∗,S ′\maxS , and a column-echelon form M′ of the augmented matrix
A∗,S ′

Output: (TRUE,M′) if S ′ cannot be right-completed and (FALSE,M′) otherwise
r ′← rank(M′) ; /* get current rank */
if r ′ > r −1 then /* if rank too large */

return (TRUE,M′) ; /* S ′ not right-completable */

else /* if rank not too large */
for i = 1, . . . , maxS ′−1 with i /∈ S ′ do /* traverse left non-elements */

M′′← colechForm(M′, ai) ; /* compute column-echelon form */
if M′′

∗,r ′+1 = 0 then /* if column i is in the current span */
return (TRUE,M′) ; /* S ′ not right-completable */

if r ′ < r −1 then /* if rank not yet sufficient */
M′′←M′ ; /* prepare a rank-increase checker matrix */
r ′′← r ′ ; /* keep track of rank increase */
for i =maxS ′+1, . . . , n do /* traverse right non-elements */

M′′← colechForm(M′′, ai) ; /* compute column-echelon form */
if M′′

∗,r ′′+1 6= 0 then /* if i increases rank */
r ′′← r ′′+1 ;
if r ′′ = r −1 then /* if rank increase sufficient */

return (FALSE,M′) ; /* S ′ might be right-completable */

else if r ′′+n − i < r −1 then /* if target rank unreachable */
return (TRUE,M′) ; /* S ′ not right-completable */

return (FALSE,M′) ; /* S ′ might be right-completable */

Algorithm 15: Semi-check whether a subset of columns is right-completable; we use rank
computations that detect whenever adding columns to the right cannot reach the required
rank and to detect whenever a column to the left does not increase the span; because M′ is
already in column-echelon form, each column-echelon form requires the computation of at
most r ′′ new entries plus possibly a single swap of two columns; the rank is then simply the
number of non-zero columns; the local data M′ remains unchanged

A # cocircuits # nodes by pruning method CPU time [s] by pruning method
in total no rank no rank

C 5 3254 1,026,635 78,049 13.62 3.37
∆4 ×∆4 460 2,018,569 87,439 37.52 5.36
∆(8, 2) 1661 3,133,113 131,006 50.88 6.60

Table 1: Comparison of no-pruning versus rank-pruning on tiny to small examples; symmetry han-
dling has been deactivated, and only a single thread has been used in order to focus on the effectivity
and efficiency of pruning alone; rank-pruning significantly reduces both the number of enumera-
tion nodes and the computation times
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Algorithm: IsInEachMax(S ′,D, A,M,M′)
Input: A subset S ′ of column indices of A, the downsetD of coplanar subsets, the configuration A, a

column-echelon form M of A∗,S ′\maxS ′ , and a column-echelon form M′ of the augmented matrix
A∗,S ′

Output: (TRUE,M′) if each maximal superset of S contains S ′ and (FALSE,M′) otherwise
if rank(M′) = rank(M) then /* S ′ did not increase rank */

return (TRUE,M′) ;

else
return (FALSE,M′) ;

Algorithm 16: Check whether the expansion from S to S ′ is in each maximal superset of S ;
the local data M′ remains unchanged

That is, whenever during the enumeration a right-maximal hyperplanar subset is reached, the
first r −1 non-zero columns MNZ of the corresponding matrix in the local data determine the signa-
ture of the unique cocircuit containing it.

Algorithm: IsMaxInDownset(S ,D, A,M)
Input: A subset S of column indices of A, the downsetD of coplanar subsets, the configuration A, and

a column-echelon form M of A∗,S
Output: TRUE if S is maximal inD and FALSE otherwise
for i ∈ [n ] \S do /* for all elements outside S */

if det(MNZ , ai ) = 0 then /* if the signature of i is zero */
return FALSE ; /* S is not maximal */

return TRUE;

Algorithm 17: Check whether a subset of columns is maximally coplanar; the determinant
calculation requires the elimination of at most r values in the right-most column

Next, some computational results are presented. Particularly interesting is the enumeration of
hyperplanes spanned by the vertices of the d -dimensional hypercube C d . This problem has already
been studied a long time ago by Aichholzer and Aurenhammer [1]. Using cleverly a lot of structural
properties of hypercubes in particular, they were able to enumerate all hyperplanes spanned by the
vertices of the 8-cube, while the 9-cube’s hyperplanes remained out-of-reach. In contrast to their
efforts, the general-purpose algorithm of this paper could compute their numbers without using
any specific knowledge about cubes. And it was able to compute the number of cocircuits (total and
up to symmetry) of the 9-cube. Table 2 shows the results.

9 Application II: Circuits

The idea to utilize SymLexSubsetRS_withData from Algorithm 7) for the enumeration of all cir-
cuits of a point configuration A is to utilize SymLexSubsetRSComin_withData on the downset of
all linearly independent column subsets of A.

In order to useSymLexSubsetRSComin_withData, one has to specify how its problem-specific
subroutinesIsInDownset,SemiIsNotRightExit, andIsCominOfDownsetwork. Again, in these
subroutines we global data (preprocessed prior to the enumeration) and local data (updated in each
enumeration node) can be utilized to speed up the computations and avoid duplicate work. This

27



A # symmetries # cocircuits # cocircuits # nodes CPU time
up to symmetry in total [hh:mm:ss]

C 2 8 2 6 8 0:00:00
C 3 48 3 20 30 0:00:00
C 4 384 6 140 136 0:00:00
C 5 3840 15 3254 760 0:00:00
C 6 46,080 63 252,434 7125 0:00:01
C 7 645,120 623 71,343,208 249,455 0:00:04
C 8 10,321,920 22,432 86,246,755,608 2,403,057 0:03:02
*C 9 185,794,560 3,899,720 448,691,419,804,586 530,623,380 13:30:12
*∆(8, 3) 40,320 56 166,420 4,643 0:00:00
*∆(8, 4) 40,320 144 1,105,575 14,030 0:00:00
*∆(9, 3) 362,880 231 10,004,154 21,033 0:00:02
*∆(9, 4) 362,880 2,522 359,022,180 226,076 0:00:07
*∆(10, 3) 3,628,800 1,337 889,205,792 113,813 0:00:21
*∆(10, 4) 3,628,800 87,254 178,227,172,388 6,889,143 0:07:38
*∆(10, 5) 3,628,800 387,983 939,079,703,204 41,451,047 1:47:49

Table 2: Computational results for the enumeration of cocircuits in hypercubes and hypersimplices
using 16 threads; the total numbers for hypercubes up to dimension 8 independently confirm the
results in [1], while the numbers up to symmetry and dimension 9 are new as well as all the numbers
for hypersimplices (marked with a “*”), to the best of my knowledge; for C 9 compare the total num-
ber of its cocircuits to the number of all its r − 1-subsets, which is

�512
9

�

= 6,208,116,950,265,950,720
(four orders of magnitude larger) – direct signature computations for all these subsets, given today’s
computation power, would have been out of reach by far

time the local data will be a matrix in column-echelon form stacked on top of another matrix. The
columns of the additional matrix yield additional information useful for circuits. For a subset S the
columns of the top matrix are the columns of a column-echelon form of the sub configuration A∗,S .
The column in the bottom matrix contains the coefficients of a linear combination of all original
columns weakly to the left that yields the column on top. If the column on top is the zero-column,
then the corresponding original column can be combined linearly from original columns strictly
to the left, and the signs of the coefficients in the bottom column yield the corresponding circuit
signature.

Formally, the stacked matrix can be defined as follows:

Definition 11. Let A∗,S be a subset of columns of a rank-r configuration A. For an integer k ∈ [1, r +1]
let Ik denote the k ×k -identity matrix.

A (r + |S |)× |S |-matrix R =
�

B
C

�

is a column-representation matrix of S if it is a column-echelon
form of the matrix

�

A∗,S
I|S |

�

(10)

Here, B is the configuration part, whereas C is the coefficient part.

Theorem 2. Let R=
�

B
C

�

be a column-representation matrix of a subset S of column indices of A. Then
S is dependent if and only if B∗,|S | = 0. Moreover, S is a circuit if and only if B∗,|S | is the first zero-column
in B, and C|S | contains no zero entry. In that case, the signs in C|S | specify one of the two possible circuits
signatures of S restricted to its support S.

Proof. Observe that
�

A∗,S
I|S |

�

· I|S | =
�

A∗,S
I|S |

�

. (11)
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If this is transformed by admissible column operations, represented by the multiplication of a matrix
C from the right, into column-echelon form, one has:

�

A∗,S
I|S |

�

·C=
�

B
C

�

. (12)

with column-representation matrix
�

B
C

�

of S . In particular, one has for the last column:

A∗,S ·C∗,|S | =B∗,|S |. (13)

S is dependent if and only if the last column is zero, by the properties of a column-echelon form.
Moreover, the entries of C∗,|S | constitute a linear dependence. Since the first rank B columns of B are
linearly independent and B∗,|S | is the first zero-column in B, one has that rank(A∗,S ) = |S | − 1. Thus,
the kernel of A∗,S is one-dimensional, and a non-zero vector in it is unique up to a non-zero scalar
multiple. Therefore, the signs of C∗,|S | are unique up to sign-reversal. Thus, the non-zero compo-
nents of C∗,|S | constitute the inclusion minimal support of a linear dependence among the columns
in A∗,S . Hence, the signs of the components of the complete vector C∗,|S | are a circuit signature on S
if and only if there are no zero-components in it.

One can derive all necessary information to process a node from the column-representation ma-
trix of its subset. For the membership in the downset of independent sets this is straight-forward.
Algorithm 18 shows the procedure. A useful semi-check for right-exitability of a subset is still an open

Algorithm: IsInDownset(S ′,D, A,R,R′)
Input: A subset S ′ of column indices of A, the downsetD of coplanar subsets, the configuration A, a

column-representation matrix R=
�

B
C

�

of S ′, and the augmented matrix R′ =
�

R,
�A∗,maxS ′

e|S ′ |

�

�

(not

yet in column-echelon form, in general), where e|S ′ | is the unit vector in R|S ′ | with a one in its
last component

Output: (TRUE,R′)with R′ =
�

B′
C′
�

a column-representation matrix of A∗,S ′ if rank(R′) = |S ′| and
(FALSE,R′) otherwise

R′← colechForm(R′) ; /* compute column-echelon form */
if B′∗,|S ′ | 6= 0 then /* if right-most conf-column non-zero */

return (TRUE,R′) ; /* S ′ is independent */

else
return (FALSE,R′) ; /* S ′ is dependent */

Algorithm 18: Check whether a subset of columns is independent; the local data R′ of S ′ is
computed here; because the local data R of S is already in column-echelon form, the subrou-
tine colechForm needs to update at most 2 rank(R)many values in the right-most column

of
�

R,
�A∗,maxS ′

e|S ′ |

�

�

, possibly after a single swap of two columns

problem. Thus, for circuit enumerationSemiIsNotRightExit simply returns FALSE for each sub-
set (i.e., the subset might be a left segment of a co-minimal subset ofD).

Given Lemma 2 it is easy to check a subset for co-minimality. The corresponding algorithm is
listed in Algorithm 19.

Table 3 shows some results that could be obtained using the resulting algorithm.
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Algorithm: IsCominOfDownset(S ′,D, A,R,R′)
Input: A subset S of column indices of A, the downsetD of independent subsets, the configuration A,

and local data given by a column-representation matrix R′ =
�

B′
C′
�

of A′∗,S
Output: TRUE if S ′ is co-minimal inD, FALSE otherwise
if C′∗,|S ′ | has zero-entries then /* zero-coefficients? */

return FALSE ; /* subset is not co-min */

else
return TRUE ; /* subset is co-min */

Algorithm 19: Check whether a subset of columns is contained in a circuit utilizing the local
data given by a column representation matrix

A # symmetries # circuits # circuits # nodes CPU time
up to symmetry in total [hh:mm:ss]

C 2 1 1 10 8 0:00:00
C 3 48 3 20 30 0:00:00
C 4 384 15 1348 218 0:00:00
C 5 3840 186 353,616 2615 0:00:00
*C 6 46,080 12,628 446,148,992 119,637 0:00:01
*C 7 645,120 3,591,868 2,118,502,178,496 25,274,903 0:04:49
*C 8 10,321,920 3,858,105,362 38,636,185,528,212,416 21,028,416,820 163:37:00
*∆(8, 3) 40,320 7,240 251,651,820 153,428 0:00:01
*∆(8, 4) 40,320 82,456 3,134,451,775 1,334,075 0:00:09
*∆(9, 3) 362,880 228,432 75,267,509,940 4,298,973 0:00:28
*∆(9, 4) 362,880 31,671,609 11,259,090,122,490 346,869,277 1:05:40
*∆(10, 3) 3,628,800 7,494,056 25,290,095,161,170 140,451,527 0:20:42
*∆(10, 4) 3,628,800 12,609,824,635 45,270,853,845,998,550 110,076,768,815 523:25:52

Table 3: Computational results for the enumeration of circuits in hypercubes and hypersimplices
using 16 threads; the results for C 6, C 7, C 8, and the results for hypersimplices are new (marked with
a “*”), to the best of my knowledge
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10 Application III: Triangulations

Most general-purpose enumeration algorithms for triangulations rely on an algorithm based on the
flip graph of triangulations [14, 5, 7]. Since Santos found a triangulation without flips [17] it is known
that one might not find all triangulations this way. There have always been hints in the literature on
how to enumerate all triangulations of a point configuration by enumerating maximal cliques in the
proper-intersection graph of all simplices. However, to date no implementation of this idea could
ever compete with flip-based algorithms.

Here, an all new attempt is presented based on symmetric lexicographic subset reverse search
with pruning (Algorithm 10). In the following, a subset of pairwise properly intersecting simplices is
called a partial triangulation.

The single most important ingredient is a very fast semi-check for the non-right-extendability of
a subset to a feasible subset, i.e., the non-right-extendability of a partial triangulation to a triangu-
lation.

It is appropriate to use a semi-check, since the decision problem of whether or not a partial tri-
angulation can be extended to a triangulation is NP-hard in general. This can be derived from the
NP-hardness of triangulating non-convex 3-polytopes [16], because for a general partial triangula-
tion the uncovered part yet to be triangulated is, in general, non-convex. Here, only extensions to the
right are interesting w.r.t. a certain ordering of simplices. It would be interesting to try to formally
extend the NP-hardness result to this restricted case.

As a first step towards the application of Algorithm 10, one has to specify how triangulations
are represented as subsets of some finite set. To this end, let A be a rank-r configuration with n
elements. Let S be the set of independent r -subsets of column indices of A (called simplices) and
ns be its cardinality. Similarly, let F be the set of all independent r − 1-subsets of column indices
of A (called simplex-facets, or simply facets whenever no confusion with the facets of A arises) and
n f be its cardinality.

By fixing an arbitrary bijection S → [ns ] to encode simplices, any triangulation T given by its
set of maximal simplices can be represented as a subset T of [ns ]. While any bijection will allow to
use Algorithm 10, there is a special bijection that helps to accelerate the semi-check for the non-
right-extendability of a subset. Here, the lexicographic ordering plays an important role. For the
rest of this section, let idxs : S → [ns ] be the bijection that assigns to each simplex its position in
the lexicographic order of simplices. In other words: choose the unique bijection preserving the
respective natural total order of elements in each set. Similarly, let idxf :F → [n f ] be the bijection
that assigns to each simplex-facet its position in the lexicographic order of facets. For convenience,
denote the inverse functions by simp = idxs

−1 and facet = idxf
−1, respectively. With this notation,

the subset T corresponding to a triangulation T is given by T = {s ∈ [ns ] : simp(s ) ∈ T }, and the
triangulation corresponding to a subset T is given by T = {S ∈ S : idxs(S ) ∈ T }. In other words, T
indexes T .

A brief inspection of Algorithm 10 shows that this results in the following: not only are the trian-
gulations enumerated in the lexicographic order of 2[ns ], but also each triangulation itself is built by
adding simplices one-by-one in lexicographic order.

The downsetD used in the method is the set of subsets indexing simplex subsets that are pairwise
properly intersecting. The setF of feasible subsets is the set of all subsets indexing a triangulation.
Since no triangulation contains any other triangulation, one can apply Algorithm 10 by specializing
its subroutines IsFeasible, Expand, and SemiIsNotRightExt.

Next, some notions are introduced that help to set up appropriate global and local auxiliary data,
which will speed up the implementation. The global auxiliary data is defined first. It is desirable to
access quickly the incidence information of spanning simplices and their facets. Given the charac-
terization of a triangulation in Definition 10, the distinction between interior and boundary simplex-

31



facets is important.

Definition 12. For a rank-r -configuration A with n points, ns many simplices, and n f many simplex-
facets, define the interior-facets table as

intfacets:

�

[ns ] → 2[n f ];
s 7→

�

f ∈ [n f ] : facet( f ) is an interior facet of simp(s )
	

,
(14)

and the boundary-facets table as

bndfacets:

�

[ns ] → 2[n f ];
s 7→

�

f ∈ [n f ] : facet( f ) is a non-interior facet of simp(s )
	

.
(15)

In Algorithm 10 an expansion sequence is used. In the current application such a sequence cor-
responds to a sequence of lexicographically greater simplices that can be added to a partial triangu-
lation without violating proper intersection. Such a sequence can be updated more easily when for
all simplices the set of all simplices that have a proper intersection with it can be accessed quickly.

Definition 13. For a rank-r -configuration A with n points and ns many simplices, define the admis-
sibles table as

admsimps:

�

[ns ] → 2[ns ];
s 7→

�

s ′ ∈ [ns ] : simp(s ′) intersects properly with simp(s )
	

.
(16)

Next, some local auxiliary data is defined: with each subset indexing a partial triangulation store

• the index set of all lex-greater simplices intersecting properly with it;

• the index set of all uncovered interior facets.

To this end, define:

Definition 14. Let T index a partial triangulation. Then the admissibles of T are defined as

admissibles(T ) :=
�

s ∈ [ns ] : s > s ′ and simp(s ) intersects properly with simp(s ′) for all s ′ ∈ T
	

. (17)

Moreover, define the free interior facets of T as

freefacets(T ) :=
�

f ∈ [n f ] : facet( f ) is an interior facet of simp(s ) for exactly one s ∈ T
	

. (18)

From these data, some useful information can directly be derived.

Lemma 7. Let T index a non-empty partial triangulation. Then:

(i) T indexes a triangulation if and only if freefacets(T ) = ;.

(ii) If admissibles(T ) = ; and freefacets(T ) 6= ;, then T is not right-extendable.

(iii) The admissibles of an expanded partial triangulation can be computed as

admissibles(T ∪{s }) = {s ′ ∈ admissibles(T ) : s ′ > s }∩admsimps(s ). (19)

(iv) The free interior facets of an expanded partial triangulation can be computed as

freefacets(T ∪{s }) = freefacets(T )4 intfacets(s ). (20)
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Proof. The assertions follow from straight-forward checks of definitions.

This is essentially what was used to-date in any attempt to enumerate all triangulations of a con-
figuration, compare [14, 5]. These methods did not scale well because without any additional prun-
ing they would process a very large number of nodes. For later reference, call this the no-pruning
method.

One significant improvement over this is the following necessary condition for expansions being
extensions.

Theorem 3. Let T index a non-empty partial triangulation with freefacets(T ) 6= ;and admissibles(T ) 6=
;.

Then, if T ∪{s ′} is right-extendable for some s ′ ≥ s with s , s ′ ∈ admissibles(T ), then

min
�

freefacets(T )
�

≥min
�

intfacets(s )
�

. (21)

Proof. If the minimal interior facet index of an admissible s is too large to cover the minimal free
facet of T , then the same holds for each admissible s ′ > s as well, since

min
�

intfacets(s ′)
�

≥min
�

intfacets(s )
�

for each s ′ > s . (22)

The theorem is a formal version of this observation.

Since all partial triangulations are built in lexicographic order, Theorem 3 means the following:
the loop over the expansion sequence in Algorithm 10 can be left as soon as the minimal interior facet
index of the new simplex index is larger than the minimal free interior facet index of T , in which case
T ∪{s } cannot be right-extended. The lexicographic building order guarantees that the minimal free
interior facet cannot be covered by any simplex added in the future either. The application of this
necessary condition is done inside the Expand subroutine and is called lex-breaking.

The use of the following quite straight-forward necessary condition for right-extendability ad-
ditionally prunes the search tree effectively in all experiments at the cost of a substantial compu-
tational effort. It was this necessary condition that, for the first time, allowed the enumeration of
all symmetry classes of triangulations for instances like the 4-cube (a standard benchmark that has
247, 451 symmetry classes of triangulations) in a CPU time comparable to the CPU times of flip-
based algorithms.

Theorem 4. Let T index a non-empty partial triangulation. Then: If T is right-extendable, then there
is a covering set of simplex indices C ⊆ admissibles(T ) such that

(i) the covering set is pairwise properly intersecting: For each s ∈ C one has for all s ′ ∈ C \ {s } that
s ∈ admsimps(s ′),

(ii) the covering set covers all free interior facets: For each f ∈ freefacets(T ) there is an s ∈ C with
f ∈ intfacets(s ).

Proof. Note that any right-extension of T to a triangulation must

• restrict to the current admissibles of T ,

• is itself properly intersecting,

• contain for each free interior facet a simplex containing that facet.

Thus, any right-extension is a special case of a cover set C as in the theorem.
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Call the application of Theorem 4 full-pruning. Note that the existence of a cover set as in The-
orem 4 does not guarantee the right-extendability, since its elements may lead to new free interior
facets that have to be covered by even more simplices.

Experiments show that full-pruning can be implemented reasonably fast and reduces the num-
ber of visited nodes drastically. However, given the lex-orders of simplices and facets, one can prove
another necessary condition for right-extendability that can be evaluated much faster and is – sur-
prisingly – almost as effective. It is based on the following theorem that is very similar to Theorem 3.

Theorem 5. Let T index a non-empty partial triangulation with freefacets(T ) 6= ;and admissibles(T ) 6=
;.

Then, if T is right-extendable, we have

min
�

freefacets(T )
�

≥min
�

intfacets
�

min(admissibles(T ))
�

�

. (23)

Proof. If T is right-extendable, then for each free facet indexed in freefacets(T ) there must exist an
admissible simplex indexed in the admissibles of T covering it, since admissibles(T ′)⊆ admissibles(T )
for all T ′ ⊇ T . In particular, for the lex-minimal free facet there must be such an admissible simplex.
The lex-minimal facet that can be covered by some admissible simplex is the lex-minimal facet of
the lex-minimal admissible simplex. Thus, if the lex-minimal free facet were lex-smaller than this,
then it could not be covered by any admissible simplex of any superset T ′ ⊇ T , and T would not be
right-extendable. The first assertion is just a translation of this into a formula.

Call the application of Theorem 5 lex-pruning. In Table 4 a comparison of the node counts is
presented for no-pruning and no lex-breaking, full-pruning with lex-breaking, and lex-pruning with
lex-breaking for tiny to small examples. No-pruning is not competitive, which explains the lim-
ited success of all implementations previously available. Moreover, the examples (and others not
in the table) exhibit that full-pruning is slightly more effective than lex-pruning. However, the nodes
pruned extra do not justify the substantially larger effort.

Now, the specialized subroutines can be presented for application of Algorithm 10 to the enu-
meration of all triangulations. This time, the global and local auxiliary data are more voluminous.
The global data G consists of the configuration A with hash maps AT for its admissibles and IT for
its interior facets. The local data L stored with each subset T of simplex indices consists, besides the
local data necessary for the lex-min check (in this case a critical-element table CET of T ), a set ADM
representing the admissible simplices of T and a set FIF representing the free interior facets of T .

The feasibility check just needs part of the local data and is straight-forward (see Algorithm 20).

Algorithm: IsFeasible(T ,F ,FIF)
Input: A subset T of simplex indices in [ns ], a set of feasible subsetsF (implicit), the set FIF of free

interior facets of T
Output: TRUE if T is a triangulation, FALSE otherwise
if FIF= ; then /* no free interior facets? */

return TRUE ; /* partial triangulation is covering */

else
return FALSE ; /* partial triangulation is not covering */

Algorithm 20: Check whether a partial triangulation is a triangulation by checking whether
all free interior facets are covered

When processing a node, the corresponding partial triangulation is expanded by a simplex ad-
missible for it. Thus, the set ADM in the local data of a node and ordered in the natural way yields
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A # triangulations # nodes by pruning method CPU time [hh:mm:ss] by pruning method
in total no full lex no full lex

C 3 74 2914 485 496 0.02 0.01 0.01
∆3 ×∆2 4488 2,385,960 29,422 29,576 1.31 0.11 0.06
C (9, 4) 357 8,627,256 4860 4925 12.87 0.08 0.02
C (10, 4) 4824 >5,180,000,000 73,084 73,258 >29:54:40.79 0.83 0.11
C (11, 4) 96,426 – 1,597,365 1,597,783 – 20.16 1.72

Table 4: Comparison of the three pruning methods no-pruning, full-pruning, and lex-pruning for a
3-cube, a product of a tetrahedron and a triangle, and some cyclic polytopes (tiny to small instances);
symmetry handling has been deactivated, and only a single thread has been used in order to focus
on the effectivity and efficiency of pruning alone; the number of nodes for no-pruning is too large to
handle even small-sized examples; full-pruning is most effective but slower than lex-pruning, which
is almost as effective and can be implemented very fast; note that the no-pruning computation for
C (10, 4)was interrupted after the given time with the given number of nodes; cyclic polytopes pose a
stress test for building triangulations simplex-by-simplex because they tend to have many simplices
and many triangulations: C (8, 3) has 5 through 15 simplices in its 138 triangulations whereas C 3

with the same number of points in the same rank has 5 through 6 simplices in its 74 triangulations,
and while the more than 92 million total triangulations of C 4 constitute a small example by today’s
standards, even without exploiting symmetries, the number of triangulations of C (16, 4) is not even
known to date, and even C (15, 4)with one point less has already more than 565 billion triangulations,
see below for exact counts

an expansion sequence. When a new simplex is added, one can generate the new local data from
the local data of T , as is described in Algorithm 21. Note that lex-breaking according to Theorem 5
might be possible.

Finally, Algorithm 22 lists the pruning step that reveals in many cases when a partial triangulation
can certainly not be right-extended to a triangulation.

This section is closed by Table 5 with some results obtained by the application of the resulting
algorithm SymLexSubsetRSFeas_withData to the enumeration of all triangulations of point con-
figurations. The known numbers could be computed much faster than in previous experiments (see,
e.g., [7]), and some numbers have never been computed before, to the best of my knowledge. The
largest new examples are the number of triangulations of the pyritohedron (largest number up to
symmetry) and the number of triangulations of∆5×∆3 (largest total number).

We close this section with a remark on optimization.

Remark 1. Any variant of algorithm SymLexSubsetRS – as any enumeration algorithm – can be
turned into a branch-and-bound optimization algorithm by specifying an objective function and a
dual-bound procedure. We have used this to compute the minimal number of simplices in a tri-
angulation of some examples. We will not go into the details, since the method we implemented
is straight-forward. Example results are: a minimal triangulation of the product of a square and a
triangle has 10 simplices (a result originally proved in [18] with quite some effort), which took less
than a tenth of a second; a minimal triangulation of the 4-cube has 16 simplices, which took less
than half a second; a minimal triangulation of the regular dodecahedron has 23 simplices, which
took less than 10 minutes; a minimal triangulation of the pyritohedron has 23 simplices, too, which
took less than 4 hours. All computation times for optimization are significantly shorter than those
for the complete enumeration.
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Algorithm: Expand(T , s , G, L)
Input: A subset T of simplex indices in [ns ], a new simplex index s , global data G encompassing the

interior-facets table IT and the admissibles table AT of A, local data L of T encompassing the
free interior facets FIF and the admissibles ADM of T

Output: (break, T ′, L′), where break is true if this and all future expansions cannot be extensions,
(T ′, L′) is the new node with T ′ = T ∪{s }, and L′ is the correct local Data for T ′

if min(FIF)<min
�

IT(s )
�

then /* can s possibly cover minimal free facet? */
return (TRUE,−,−) ; /* min. free facet not coverable by s ′ ≥ s */

T ′← T ∪{s } ; /* add s to the subset */
FIF′←FIF4 IT[s ] ; /* free interior facets by x-oring */
ADM′←{s ′ ∈ADM : s ′ > s }∩AT[s ] ; /* admissibles t.t.r. by intersection */
L′← (FIF′,ADM′) ; /* put together local data */
return (FALSE, T ′, L′) ; /* return the node */

Algorithm 21: Expand a subset indexing a partial triangulation by a new simplex index; at
the same time compute its new local data consisting of free interior facets and admissible
simplices

Algorithm: SemiIsNotRightExt(T ′,D,F , G, L, L′)
Input: A subset T ′ of simplex indices in [ns ], the downsetD of subsets indexing partial triangulations,

the setF of triangulations (given implicitly by IsFeasible), global data G encompassing the
interior-facets table IT and the admissibles table AT of A, local data L of T encompassing the
free interior facets FIF and the admissibles ADM of T

Output: TRUE if T ′ is not right-extendable, FALSE if T ′ may be right-extendable

if min(FIF)<min
�

IT
�

min(ADM)
�

�

then /* min. free facet not coverable? */
return TRUE ; /* min. free facet not coverable by admissibles */

else
return FALSE ; /* no contradiction to right-extendability */

Algorithm 22: Check whether a partial triangulation can certainly not be right-extended to a
triangulation by direct application of Theorem 5
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A # symmetries # triangulations # triangulations # nodes CPU time
up to symmetry in total [hh:mm:ss]

C 4 384 247,451 92,487,256 3,446,658 0:00:02
∆6 ×∆2 30,240 533,242 16,119,956,160 6,325,471 0:03:45
∆4 ×∆3 2880 7,402,421 21,316,106,880 116,083,389 0:05:12
*∆5 ×∆3 (M1Max) 17280 25,606,173,722 442,472,050,753,920 429,725,338,123 1313:57:17
*∆(7, 2) 5040 37,676,752 189,355,661,460 10,222,438,919 1:39:26
*∆(6, 3) 720 119,186,888 85,793,497,200 38,860,274,741 1:00:03
3∆3 24 925,148,763 22,201,684,367 7,154,329,211 0:17:52
C (14, 8) (old) 28 2,429,751 68,007,706 187,209,581 0:00:36
C (19, 14) (old) 38 6,515,385 247,567,074 1,265,333,659 0:07:07
*C (16, 3) (old) 2 58,492,955,941 116,985,744,912 887,659,233,812 30:44:20
*C (14, 4) (old) 28 244,771,183 6,853,476,616 8,343,040,543 0:23:07
*C (15, 4) (old) 30 18,845,509,142 565,365,033,880 650,520,069,379 34:05:57
*C (14, 5) (old) 2 328,152,636,588 656,305,030,644 11,575,302,270,564 475:34:44
*C (14, 6) (old) 28 8,314,337,199 232,797,963,456 535,970,897,964 30:27:47
*C (14, 7) (old) 2 15,813,939,113 31,627,843,174 937,148,113,629 40:44:32
*C (15, 9) (old) 2 1,397,895,884 2,795,741,709 117,124,014,922 6:04:27
*C (16, 10) (old) 32 1,902,605,255 60,881,310,552 213,053,994,783 16:45:55
*icosahedron 120 95 8598 3812 0:00:00
*pseudoicosahedron 24 7701 182,670 147,774 0:00:00
*dodecahedron 120 12,775,757,027 1,533,079,037,570 125,333,463,448 8:28:49
*pyritohedron 24 1,363,918,758,719 32,734,029,351,118 13,786,801,148,393 607:18:52

Table 5: Computational results for the enumeration of triangulations using 16 threads; the results
for∆5×∆3, the hypersimplices, some cyclic polytopes, as well as the regular icosahedron, the pseu-
doicosahedron (a fibonacci approximation of it), the regular dodecahedron, and the pyritohedron
(a fibonacci approximation of it) are new, to the best of my knowledge (marked with a “*”); the CPU
times a far smaller throughout than for any earlier effort
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11 Conclusions

Variants of the generic algorithm SymLexSubsetRS have been introduced to enumerate maximal,
co-minimal, and feasible subsets of a finite sets up to symmetry. New versions of lex-minimality
checks and new pruning methods for partial cocircuits and partial triangulations have been pre-
sented. Interestingly enough, no non-trivial pruning-method could be found for subsets that are
not contained in any circuit. The new methods allowed for the computation of many new cardinal-
ities, among them the number, up to symmetry, of cocircuits of the 9-cube, the number of circuits
of the 8-cube, and the number of all triangulations of the dodecahedron.

The algorithm SymLexSubsetRS can be enhanced by an objective function and a dual-bound
procedure to generate a straight-forward optimization algorithm. This was applied to find triangu-
lations with a minimal number of simplices for the 4-cube and the regular dodecahedron in much
less time than the enumeration takes. Since this was only used in a straight-forward manner, no de-
tails were explained to this end. The efficiency of such an optimization algorithm will depend on the
quality of the dual-bound procedure. It would be interesting to see where such an approach would
be competitive to other special optimization algorithms (like the universal-polytope approach [10]
for the minimal triangulation).

The new methods should have many more applications beyond the three applications in this
paper like the enumeration of maximal cliques in a graph up to symmetry. This will be subject of
further research.
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